【摘 要】
:
对珠江广州河段(2007年4月—2010年4月)和磨刀门水域(2009年7月—2010年1月)理化指标和轮虫群落进行了调查研究,主要结果如下:1.珠江广州河段2个采样点共记录轮虫76种,其中污染指示轮虫51种。优势种为微型多突轮虫(Lififerotrocha subtilis)、裂痕龟纹轮虫(Anuraeopsis fissa)、西氏三肢轮虫(Filinia novaezealandiae)和角
论文部分内容阅读
对珠江广州河段(2007年4月—2010年4月)和磨刀门水域(2009年7月—2010年1月)理化指标和轮虫群落进行了调查研究,主要结果如下:1.珠江广州河段2个采样点共记录轮虫76种,其中污染指示轮虫51种。优势种为微型多突轮虫(Lififerotrocha subtilis)、裂痕龟纹轮虫(Anuraeopsis fissa)、西氏三肢轮虫(Filinia novaezealandiae)和角突臂尾轮虫(Brachionus angularis)。轮虫丰度范围69—6038 ind. L-1,中大码头采样点丰度最高,平均丰度为1891±1282 ind.L-1; 2站点高峰期均出现在枯水期。轮虫丰度与pH、氮磷比显著正相关,与径流量显著负相关(P<0.05)。冗余分析(RDA)表明叶绿素a、透明度、氮磷比是影响轮虫群落结构时空变化的重要因子。2.磨刀门3个采样点共记录轮虫69种,其中污染指示轮虫51种。优势种为广布多肢轮虫(Polyarthra vulgaris)、螺形龟甲轮虫(Keratella cochlearis)、热带龟甲轮虫(Keratella tropica)和暗小异尾轮虫(Trichocerca pusilla)。轮虫丰度范围为0—199ind.L-1,滞水区采样点丰度最高,平均值为31±54ind. L-1; 3采样站点高峰期均出现在丰水期。轮虫丰度与水温、总氮、叶绿素α显著正相关,与盐度显著负相关。磨刀门水域理化因子变化剧烈,轮虫多样性指数波动范围较大,反映出轮虫群落结构的不稳定性。RDA分析表明水温、盐度和叶绿素α是影响轮虫群落结构季节变化的重要因子。3.根据水质生态学评价指标,珠江广州河段水体E/O值2.83, QB/T值1.75,已达重度富营养水平;磨刀门水体E/O值1.62, QB/T值1.38,已达轻度富营养水平,与非生物环境因子营养状态综合评价结果一致。
其他文献
令A=Z[v,v-1],U是A上量子代数.它是由生成元和关系式定义的A-Hopf代数.设k是域,q是k中非零元.A→k(v(?)q)是A代数同态.令Uq=U(?)Ak,则Uq是k上量子代数.它有继承的k-Hopf结构.量子代数诱导表示及其高次上同调模的零化性质是量子代数表示理论研究的重要内容之一本文对支配权引入在极小抛物子代数上具有Borel-Weil-Bott性质(简称B-W-B性质)的概念,以
占地球表面积约71%的海洋中微生物资源非常丰富,是多种活性物质和工业上有重要应用价值的酶基因的天然宝库。由于环境的极端性及特殊性,超过95%的海洋微生物在现有实验条件下不能被培养,这成为海洋微生物资源开发利用的瓶颈。利用宏基因组技术对这些微生物资源进行研究已成为海洋微生物资源开发的一个新热点。本研究基于中山大学生物防治国家重点实验室提供的胡安德富卡洋脊热液区喷口处极端微生物Fosmid宏基因组文库
本文采用研究较少的ZnO、Fe2O3纳米粒子作为复合镀中的纳米微粒,并在复合电镀时引入超声场,采用脉冲复合电镀技术制备了Sn-ZnO和Sn-Fe2O3复合镀层。利用扫描电镜(SEM)、显微硬度计、紫外-可见分光光度计等分析镀层的表面形貌、显微硬度、耐腐蚀、光催化等性能,并研究各制备工艺对其性能的影响。本文主要研究工作及结论如下:第一,超声场的引入都会直接导致Sn-ZnO纳米复合镀层的致密性变差,孔
本文在一维半空间中研究具有一般边界条件的广义KDV方程和广义BBM-Burgers方程解的渐近性态及具有一般边界条件的退化粘性非齐次双曲守恒律方程解的整体存在性.对一维半空间中具有一般边界条件的广义KDV方程,在流函数为光滑严格凸和初边值为小扰动的条件下,用L2能量方法证明其解渐近收敛到一个弱稀疏波,并导出其解的一个收敛率.对于具有一般边界条件的退化粘性的非齐次双曲守恒律方程,利用延拓定理和极值原
本文主要是通过代数簇X的丰富向量丛E的数字性质来刻画超二次曲面以及丰富向量丛E的结构。主要结果是:设X是光滑的n维射影簇,E是X上的丰富向量丛,E的秩r
本文在一维半空间中研究具有一般边界条件的带退化粘性项的单个守恒律方程的解渐近收敛到稀疏波的收敛率及广义KdV-Burgers方程一般初边值问题解的渐近性态.对于具有一般边界条件的带退化粘性项的单个守恒律方程,用L1估计导出了在流函数为凸及u-
本文利用亚纯函数的Nevanlinna值分布理论和Wiman-valiron整函数理论,研究了非线性复微分代数方程亚纯解的增长级等问题,推广了Gol’dberg, Barsegian, Hayman,Korhonen等人的结果。全文共分三部分:第一部分,主要介绍Nevanlinna值分布理论和Wiman-valiron整函数理论的基础知识,其中包括常用记号和一些基本定理。第二部分,对一类非线性复微
基于振动特性的结构损伤识别方法作为工程结构健康监测的重要方法之一,已经越来越多地受到广大科研人员的关注,然而其理论方法在实际应用时,依旧存在着一些困难与不足。粒子群优化(PSO)算法由于其快速的计算收敛性和实现的简单性等特点,已经逐渐引起人们的高度关注,目前已被广泛应用于函数优化、神经网络训练、模糊系统控制等领域,在近几年它也开始被应用到不同工程应用领域。本文正是将这两个不同领域中的热门技术进行结
随着集成电路的快速发展,器件特征尺寸进入纳米尺寸范围以及量子信息学的兴起,宏观量子效应成为目前理论和实验研究的热点。宏观量子效应研究的一个重要的问题是环境热涨落导致的退相干的问题。因此,研究环境与一个简单的两能级系统的相互作用具有十分重要的意义。目前,人们通常用谐振子库(a bath of harmonic oscillators)来描叙与两能级系统相作用的环境,这一物理模型也就是著名的耗散两能级
本文研究的途径是通过射影流形上的丰富线丛的nef值去探讨流形的结构,主要利用Mori理论,研究n维射影流形的结构。研究结果为:设X是n维射影流形,L是X上的丰富线丛,τ=u是L的nef值。如果X的第二Bettiv数为1,那么X是指数为u的Fano流形;如果u=n+1,那么X是Pn;如果u=n,那么X是Q”或一条光滑曲线上的Pn-1丛.