【摘 要】
:
装备制造业是一个国家工业化发展程度的重要标志。数控机床,作为装备制造业的“工作母机”,是不可缺少的“生产工具”。五轴数控机床作为高端机床的代表,由于具备两个旋转轴,拥有更好的加工柔性、更高的加工效率等优点,但同时也引入了更多的误差影响,刀具运动也更加复杂。研究五轴机床误差的作用机理,并进行检测与补偿,对提高五轴机床的加工精度具有十分重要的意义。本文以五轴联动数控机床为研究对象,考虑机床精度在几何误
【基金项目】
:
国家科技重大专项(2015ZX04001002); 国家留学基金委国家建设高水平大学公派研究生项目(201906070051);
论文部分内容阅读
装备制造业是一个国家工业化发展程度的重要标志。数控机床,作为装备制造业的“工作母机”,是不可缺少的“生产工具”。五轴数控机床作为高端机床的代表,由于具备两个旋转轴,拥有更好的加工柔性、更高的加工效率等优点,但同时也引入了更多的误差影响,刀具运动也更加复杂。研究五轴机床误差的作用机理,并进行检测与补偿,对提高五轴机床的加工精度具有十分重要的意义。本文以五轴联动数控机床为研究对象,考虑机床精度在几何误差及控制误差下的影响,以空间误差补偿及动态误差控制为最终目的开展了相关研究。建立了五轴机床的空间误差模型,开展了几何误差的灵敏度分析与耦合关系分析。提出了优选测量点分布的空间误差检测方法和自适应几何误差辨识方法,并基于站位分布与坐标自校准方法优化了多站检测精度。分析了传统刀轨加减速控制下的刀轨误差形成机理,提出了工件坐标系下刀具位姿同步运动的刀轨加减速控制方法,设计了评价刀轨加减速控制误差的检测试件。应用本文研究内容,形成了机床误差的补偿方案,并进行了应用案例的研究。本文主要研究成果如下:(1)建立了五轴机床的空间误差模型,开展了几何误差的灵敏度分析与耦合关系分析。基于刚体运动学理论,建立了几何误差到空间误差的传递关系。利用误差投影及引入有效切削长度,定义了单一灵敏度指标,提出了综合考虑6项刀具位姿误差的几何误差灵敏度分析方法,分析对刀具位姿误差具有主要影响的关键几何误差,通过机床精度设计进行了应用与验证。分析几何误差间的耦合关系,利用坐标系的定义方式对误差项进行合并,简化了空间误差模型。通过考虑误差检测及求解过程中几何误差的耦合关系,设计了球杆仪2种安装位置下的4种测量模式,检测每个旋转轴的所有几何误差,并提高了检测效率。(2)设计了优选测量点分布的五轴机床空间误差检测方法与自适应的几何误差辨识方法。利用切比雪夫多项式描述几何误差,将几何误差的辨识转化为多项式系数的辨识。基于多项式系数到空间误差的传递矩阵,重新定义了可观测度指标,设计了测量点的优选方法,能够减小测量误差对几何误差辨识精度的影响,通过与随机测量点分布方法的比较进行了验证。提出了自适应分配多项式阶数的几何误差辨识方法,优化了几何误差的近似方式,提高了几何误差的辨识精度。对一台AC双摆头五轴机床的空间误差进行检测,通过比较不同几何误差辨识方法下的空间误差预测精度,对提出的几何误差辨识方法进行了应用与验证。(3)基于站位分布与坐标自校准方法优化了激光跟踪仪多站检测精度。通过建立站位坐标与测量点坐标之间的映射关系,提出了减小测量误差与人工摆放误差影响的站位分布选择方法,实现测量精度的提升,通过比较不同站位分布下的测量精度进行了验证。建立了站位坐标与测量点坐标自校准误差之间的关系,提出了针对坐标自校准误差进行迭代求解的坐标自校准方法,提高了坐标自校准精度,与传统坐标自校准方法进行了对比。通过使用不同的检测方法对一台机床的空间误差进行测量精度的比较,对优化的多站检测方法进行了应用与验证。(4)提出了工件坐标系下刀具位姿同步运动的刀轨加减速控制方法,设计了一种评价刀轨加减速控制影响的检测试件。基于理论与图形分析,研究了传统五轴刀轨加减速控制下刀轨误差的形成机理。对刀具位置轨迹沿进给方向进行加减速控制,并同步对刀具姿态轨迹进行加减速控制,然后运用逆运动学计算获得各轴指令轨迹,改进了刀轨加减速控制方法,消除了传统加减速控制产生的刀轨误差。通过设计中间位置旋转轴反向运动的直线刀轨,提出了一种平面检测试件,能够显著反映刀轨加减速控制产生的误差。(5)应用本文研究成果,形成了五轴机床误差的补偿方案。建立五轴机床空间误差模型,设计空间误差的检测方法并辨识几何误差,利用几何误差辨识结果进行空间误差补偿;应用改进的刀轨加减速控制方法控制机床运动,减小刀轨误差。以一台AC双摆头五轴机床为研究对象,针对S形检测试件刀轨进行了误差补偿的应用研究。
其他文献
资源分配问题是网络系统中一类重要的优化问题,而且已在传感器网络、智能电网和交通系统等领域得到广泛的研究。由于分布式算法能够有效克服由设备故障、外部扰动和通信延时引入系统中的不确定性,而且不需要一个中心结点去获得优化问题的完整信息,还能够有效地保护个体的隐私,这些优点使得分布式资源分配算法引起了学术界和工业界的广泛关注。本文利用图论、非光滑优化理论和拉萨尔不变原理等理论工具分别研究包含通信时间延时的
语音合成(speech synthesis,又名text-to-speech,TTS)是人机交互的重要方法之一,旨在合成清晰且自然的音频。语音合成的应用场景非常广泛,比如手机和个人电脑的语音助手、同声传译的语音输出环节、车载导航播报、新闻朗读等等。通过语音合成,可以解放用户的眼睛,使人能在“眼观”的同时还可以“耳听”,增加信息接收的带宽。最近,随着神经网络的快速发展,端到端的语音合成模型逐渐进入人
在这个信息网络高速发展的时代,神经网络作为现代人工智能技术领域不可或缺的部分已经被广泛地研究,并成功应用于各种科学和工程领域,包括信息领域、医疗领域、控制领域、交通领域等。值得注意的是,神经网络的这些实际应用在很大程度上依赖于它的动态性能。然而,由于神经元之间信号传输速度的局限性和一些外部干扰因素,时滞在神经网络的实现及应用中是普遍存在的,极有可能会导致意想不到的动态行为,如振荡、低性能、甚至不稳
基于电磁波与金属-介质复合微结构相互作用的等离子体共振传感器是一种传感性能优越、体积小、易集成的传感器件,它常表现出对环境湿度或溶液折射率、生物分子类别和浓度、入射电磁波倾斜角度的灵敏响应,在化学、生物、海洋产业领域都有潜在的应用市场。然而,等离子体共振传感器距离实际应用还存在很多问题,例如:等离子体共振传感器的制备成本高、简单结构的传感器的传感性能较低。针对以上问题,本论文首先研究低成本高输出的
随着科技的日益快速发展,传感器作为信息获取的源头,其作用和地位愈加重要。石英晶体微天平(Quartz crystal microbalance,QCM)作为一类十分重要的质量传感器,目前,在很多领域获得了广泛应用。本文以QCM传感器质量灵敏度的关键技术为研究对象,通过深入研究QCM的传感机理,并结合有限元仿真技术,揭示了决定QCM传感器质量灵敏度的关键因素,提出了通过优化电极结构设计来提高QCM传
随着世界各国经济和科学技术的飞跃发展,移动机器人的应用领域越来越广泛,其应用场景也从室内环境拓展到了各种复杂环境,如野外、水下、空中甚至外太空等。目前,对于复杂环境的机器人系统仍存在许多尚待研究的课题。本文针对环境全局信息已知、地面崎岖不平的复杂环境条件下的轮式机器人的路径规划和轨迹跟踪控制技术进行研究。本文建立了崎岖地面的环境模型,针对曲面路径规划算法的时间复杂度改进问题,提出了多尺度技术。针对
机器学习是大数据处理的常用工具之一。然而,依靠单个计算节点的计算能力处理大规模的数据集,不能在可接受的时间范围内将模型训练到满意的精度。通常采用多个计算节点来实现数据并行训练。每个计算节点迭代式地处理部分数据集,每次迭代都要通过网络与其他计算节点同步模型的信息,保证训练的正确性。由于模型规模通常在数百兆至数千兆字节之间,每个计算节点每次迭代都要交互等同于模型大小的数据量,例如模型的参数或者梯度,使
近几年来,忆阻器作为一种新兴的电子元件在非易失存储和神经仿生方面都有重要的应用。忆阻器是具有电容结构,能够被多次写入和非破坏性读取的二端器件,它是下一代存储器的有力竞争者。除了作为存储器件,忆阻器作为一种具有可调整状态的二端器件,与生物突触具有高度的相似性,基于忆阻器的大规模神经网络有望实现类脑计算系统,在生物神经仿生领域也具有很高的研究价值。神经网络已经具有几十年的研究历史,近年来由于深度神经网
高灵敏、快速和低成本的生物标志物检测在重大疾病的早期诊断中具有重要意义。但现有的光学传感器尚不能达到疾病早期诊断的要求,主要存在三个方面的瓶颈问题。(1)光和物质相互作用弱,难以实现高灵敏传感;(2)传感器制备重复性差,难以实现高灵敏的一次性使用;(3)步骤繁琐,难以实现快速检测。因此,如何同时实现一次性、高灵敏和快速的生化传感成为光学传感领域亟待解决的关键问题。针对上述瓶颈问题,本论文利用光微流
随着自动化技术的发展,工业机器人以其高效、低成本、重复性好等优点,在汽车制造、电子电气和航空航天等现代工业生产中得到了广泛的应用。在这些应用中,运动精度作为关键的性能指标,是工业机器人完成操作任务的重要保证。然而,由于工业机器人结构中制造误差、关节间隙、弹性变形等不确定性因素的影响,末端执行器实际的运动远未达到高精度、高可靠的性能要求。因此,精确地分析和评估工业机器人的运动精度可靠性,是确保其在工