【摘 要】
:
近年来,随着无人机技术和传感器技术的飞速发展,地理数据获取高效、成本低廉、建模快速。倾斜摄影测量成为数字城市建设的一种重要技术。然而倾斜摄影测量在利用影像生成的点云数据构建表面模型过程中,存在表示建筑物结构轮廓的棱、角等尖锐特征丢失的问题,重建的表面模型不能全面如实的反映建筑物原貌。本文利用倾斜摄影过程中获取的影像数据生成增强型三维点云模型数据,利用增强型三维点云模型综合空间几何信息和多角度的影像
论文部分内容阅读
近年来,随着无人机技术和传感器技术的飞速发展,地理数据获取高效、成本低廉、建模快速。倾斜摄影测量成为数字城市建设的一种重要技术。然而倾斜摄影测量在利用影像生成的点云数据构建表面模型过程中,存在表示建筑物结构轮廓的棱、角等尖锐特征丢失的问题,重建的表面模型不能全面如实的反映建筑物原貌。本文利用倾斜摄影过程中获取的影像数据生成增强型三维点云模型数据,利用增强型三维点云模型综合空间几何信息和多角度的影像颜色纹理信息提取特征边界线,在此基础上利用特征边界线进行点云分割,对分割得到的分块点云重建并拼接,实现高度保真的表面模型的完整重建。主要研究内容和成果如下:(1)增强型三维点云模型的定义及构建方法基于倾斜摄影测量方式获取的点云数据具有一个三维点对应多张影像不同像素点的特性,本文提出一种新的数据组织模型——增强型三维点云模型,相比传统三维点云模型增加了点云数据匹配的影像像素坐标、颜色、深度等关联信息,建立点云与影像的关联以及影像与影像之间的关联关系。在此基础上,本文设计了基于open MVG和open MVS的增强型三维点云模型建立算法,实现了增强型三维点云模型的构建。同时注意到已有算法中错误匹配数据中有正确数据,对此数据进行了分类记录。(2)基于增强型三维点云模型的特征边界线提取算法基于多种数据综合利用的思想,本文提出基于增强型三维点云模型的特征边界线提取算法。该算法首先利用边缘检测算法检测影像边界线。然后基于增强型三维点云模型中影像数据与点云数据的关联,利用点云辅助去除错误特征边界线。基于增强型三维点云模型中多影像数据间的关联,用不同影像边缘线补充缺失的正确特征边界线,得到较好的影像特征边界线结果。之后,利用增强型三维点云模型将影像特征边界线转换为三维特征边界线,并通过二维线段与三维线段间的对应关系,实现特征边界线的闭合,从而得到较好的特征边界线。(3)基于“分割-拼接”思想的点云表面重建算法基于分割-拼接思想,本文利用特征边界线进行点云分割,通过对分割得到的分块点云进行表面重建,再基于特征边界线对表面模型进行拼接,实现保持特征的表面重建。重建结果表明,相比于直接进行表面重建,本方法能够有效地保留物体表面的尖锐特征。
其他文献
桑植白族仗鼓舞湖南省桑植县白族乡特有的民俗舞蹈项目,也是一种体育舞蹈表演,蕴含丰富的体育价值。白族仗鼓舞具有非同一般的观赏性和表演美感,并入选为湖南省第二批非物质文化遗产项目。本文的研究通过田野调查更加深入的发掘桑植白族仗鼓舞的体育价值,在研究植白族仗鼓舞的训练现状的同时,结合相关文献归纳总结了仗鼓舞的历史起源、形态特征以及动作形式,并对当前仗鼓舞存在的问题运用了现代运动训练理论提出优化建议,吸取
随着汽车保有量与工程机械、农业机械数量的快速增长,柴油机将面临严格的噪声和尾气排放限值、低燃油消耗和高可靠性等挑战,对柴油机比质量、噪声和排放等也提出更高的要求。内燃机属于多噪声耦合动力装置,控制噪声一直是内燃机研究领域的难点。噪声控制的前提是准确识别和定位噪声源,近场声全息法除了能测量“传播波”还能测量近场“倏逝波”,在低频空间具有很好的优越性,被广泛应用于声源识别。因此,基于近场声全息理论开发
对于柴油机而言,采用较早的向缸内喷射燃油技术,能达到促进燃油和空气混合,改善缸内燃烧,降低污染物排放目的。但由于在较早的喷射正时条件下将燃油喷射到低压低温燃烧室中,燃油撞击燃烧室壁面成为普遍现象。导致大部分燃油铺展在燃烧室凹坑侧壁,油膜面积及厚度增大。导致缸内出现壁面淬熄效应,会在气缸壁面形成厚约0.1-0.2mm左右的不燃烧或不完全燃烧的淬熄层,增加直喷发动机的污染物排放。所以需要对气道-缸内气
近些年来,随着海洋遥感、海洋环境中目标的探测与识别技术的发展,海面散射及其与目标的复合电磁散射越来越受到国内外学者的重视。本论文主要围绕含卷浪海面电磁散射、含卷浪海面与目标复合电磁散射两个方面展开研究。具体采用迭代物理光学法(IPO)求解了一维、二维含卷浪海面的电磁散射;基于多路径散射思想和等效原理,运用物理光学法(PO)-迭代物理光学法(IPO)结合的方法计算了一维含卷浪海面与二维目标、二维含卷
金针菇(Flammulina filiformis)富含赖氨酸,而赖氨酸对儿童的身高和智力发育有良好的作用,因此金针菇被誉为“增智菇”。基于金针菇全基因组测序结果,筛选到金针菇赖氨酸生物合成途径中的关键基因,确定赖氨酸是通过α-氨基己二酸途径(α-Aminoadipate pathway,AAA途径)合成的。以金针菇AAA途径为基础,以途径中的关键基因为核心,研究其分子机理和调控机制有助于开发金针
背景和目的:肝脏作为人体最重要的代谢器官,承担着机体代谢、解毒、蛋白合成、胆汁分泌和免疫调节等多种关键的生理功能。肝脏的损伤直接影响人体健康,诱发多种疾病发生。病毒、药物和酒精等外界因素会引起肝细胞的大量坏死,导致肝功能代谢障碍或失代偿。临床上,针对症状较轻的患者,主要运用一些具有保肝作用的药物对肝脏损伤进行保守性治疗,而重症终末期患者只有依靠肝脏移植手术进行治疗。但是,药物治疗存在一定的局限性,
医疗卫生事业是关系广大人民群众切身根本利益的事业,目前随着经济的发展,医疗的进步,人民生活水平的提高,人民对医疗服务的要求也越来越高,越来越多的人都涌向大医院进行看病,造成目前大医院看病越来越难,挂号也越来越难,而社区医院卫生院等就诊人员越来越少。医疗卫生事业是公共管理中的重要组成部分之一,其领域的改革成为越来越多学者关注的焦点。针对现实情况,国家实行全面医联体建设。研究主要目的是探索T市从201
深度神经网络已经被广泛应用在计算机视觉、自然语言处理、语音识别等领域。随着深度神经网络的层数越来越深,参数规模也越来越大,训练与运行深度神经网络的时间也越来越长,对机器设备的要求也越来越高,深度神经网络在手机等移动设备上的部署和运行也受到约束,因此减小深度神经网络的计算量和存储空间显得尤为重要。深度神经网络剪枝是一种通过剪枝减少网络参数冗余缩小网络规模的方法。本文从深度神经网络中的权重值出发,分析
抗生素类的抗氧化剂、促生长剂广泛地应用于家禽饲养中,所引发的耐药性和药物残留问题日益严重,寻找替代抗生素的饲料添加剂非常必要。油橄榄叶富含多酚、黄酮、糖类、有机酸
当前绝缘栅双极型晶体管(IGBT)由于性能优越,被广泛应用与新能源汽车、清洁能源发电、工业加热以及家用电器变频等领域。然而IGBT常常工作在高压、大电流以及高频率条件下,功率波动剧烈,IGBT要承受较高的不平衡热应力。从而产生键合线脱落或焊料层疲劳,最终导致器件因老化而失效。为提高其可靠性,常要研究其参数和老化的关系。传统测量老化参数的方法,存在测量精度不高、测量速度慢、不具备自动计算功能等缺点。