钢/铝异种材料电阻点焊的研究

来源 :吉林大学 | 被引量 : 0次 | 上传用户:jintianfuqin
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在环境问题日趋严重的今天,轨道客车、汽车等产业面对的困难也越来越多。如今,能实现节能减排的有效对策就是汽车轻量化和轨道客车的轻量化,而增加轻量化材料的使用量是能够达到汽车轻量化目的的直接有效的手段。那么钢/铝异种材料的焊接就是眼前即刻就要解决的难点问题。在物理、化学等方面,钢和铝存在较大差异,使得钢/铝异种材料的焊接性极差,焊接接头的力学性能很难达到实际使用标准。钢/铝焊接性问题是制约汽车轻量化技术取得进展的科学技术问题之一。电阻点焊是应用较为广泛的焊接技术。因此,研究钢/铝异种材料电阻点焊,有实际应用价值和理论意义。首先本文研究了SUS301L不锈钢(16Mn低合金钢)/6063-T6铝合金异种材料电阻点焊接头,由其微观组织特点及力学行为可知,不锈钢(16Mn钢)/铝合金电阻点焊接头主要由铝合金熔核、不锈钢(或16Mn钢)熔核和钢/铝界面层组成,本质为熔-钎焊接头。胞状晶、胞状树枝晶、树枝晶和少量等轴树枝晶是铝合金熔核的主要晶体结构;柱状的奥氏体晶粒是不锈钢熔核的主要组成;16Mn钢熔核主要由马氏体、珠光体和贝氏体组成。在点焊过程中,液态铝合金在固态不锈钢(或16Mn钢)表面润湿、铺展并发生Fe、Al原子的互扩散以及界面反应,在钢/铝界面形成Fe-Al金属间化合物(IMC)层。钢/铝界面层为双层结构:舌状Fe2Al5层(靠近不锈钢(或16Mn钢));针状Fe Al3层(铝合金熔核侧)。在拉剪力作用下不锈钢(16Mn钢)/铝合金点焊接头有两种断裂模式(结合面断裂和纽扣断裂)。本试验条件下不锈钢/铝合金点焊接头的裂纹主要在界面IMC层萌生、扩展(结合面断裂模式)。而16Mn钢/铝合金接头,当铝熔核直径小于5.8 mm时,为结合面断裂模式;当铝熔核直径大于5.8 mm时,裂纹主要沿着铝熔核及其热影响区萌生、扩展(纽扣断裂模式)。铝合金熔核和脆硬的界面IMC层是恶化钢/铝接头力学性能的主要原因。研究焊接参数和电极形貌两方面焊接工艺因素对不锈钢/铝合金电阻点焊接头的影响规律。在采用F型电极时,接头铝熔核直径、压痕率以及IMC层厚度随着焊接电流(或焊接时间)的增加而增加;而接头拉剪力随之增加则先增大后减小。在焊接电流4 k A-7 k A(焊接时间100 ms-200 ms)区间,熔核直径的增加导致了接头拉剪力的增大;在焊接电流(焊接时间)继续增加时,接头拉剪力减小,导致这一现象的主要因为是较厚的IMC层和铝熔核中的缩孔。当焊接电流、焊接时间和电极压力分别取值为7 k A、200 ms和2 k N时,接头熔核直径、压痕率、IMC层厚度、接头拉剪力分别为为5.4 mm、30.1%、2.3μm、1.8 k N。研究结果表明,优化电极(与钢侧接触的电极是直径10 mm的圆形电极,与铝合金侧接触的电极为半径35 mm的球形电极)更利于改进钢/铝接头表面质量、组织和性能。并且在焊接电流、焊接时间和电极压力分别为13 k A、300 ms和3 k N的优化焊接参数条件下,获得了熔核直径7.2 mm、压痕率10.9%、IMC层厚度1.4μm及接头拉剪力3.6 k N的钢/铝接头。比F型电极的熔核直径和拉剪力分别提高了33.3%和100.0%,压痕率降低了63.8%。在F型电极条件下采用纳米粉末添加法研究金属(非金属)元素:Cu、Si、Zn、Ti对不锈钢/铝合金点焊接头的影响规律。Cu、Si、Zn和Ti均对接头组织及力学性能有显著的影响:Cu、Si在促进液态铝在固态钢表面润湿铺展性的同时抑制界面金属间化合物的生长,提高了接头拉剪力;Zn在抑制界面反应的同时改善金属间化合物层的性质(生成Fe2Al5Zn0.4),提高了接头的力学性能;Ti使晶粒细化,与Fe形成新物相(Fe2Ti)抑制了IMC的生成,提高接头的力学性能。分别添加1.51 mg Cu、5.78 mg Si、0.97 mg Zn或0.62 mg Ti粉末,钢/铝电阻点焊接头拉剪力分别为3.07 k N、3.55 k N、2.74 k N、2.68 k N,比未添加合金元素的接头拉剪力(1.80 k N)分别提高了70.56%、97.22%、52.22%、44.40%。因此,金属(非金属)粉末添加法是提高不锈钢/铝合金接头拉剪力的重要手段。通过ANSYS软件建立不锈钢/铝合金点焊过程的有限元模型(轴对称),研究其热过程。结果表明,采用F型电极在焊接参数为焊接电流7 k A、电极压力2k N时,钢/铝点焊接头界面上的温度在200 ms时达到最大值(913℃);此时,熔核直径达到最大值(5.5 mm),与试验结果(5.4 mm)相吻合。在热循环曲线的基础上研究不锈钢/铝合金点焊过程中的钢/铝界面反应机制,通过界面金属间化合物生长的热力学分析可知钢/铝界面反应过程中Fe2Al5率先生成,随后再生成Fe Al3。最后,探讨了Cu、Si、Zn和Ti的作用方式及钢/铝界面层的冶金反应过程。Cu、Si、Zn和Ti作用下界面层的生长可归纳为四个阶段:熔化,溶解扩散,形成长大和凝固。
其他文献
汽车高速行驶时,风噪是影响舒适性的重要指标,而风噪仿真优化是车型开发前期的必要手段。由于风噪声传播过程复杂,以往基于车窗压力脉动仿真进行了大量的汽车风噪优化工作,而侧窗压力脉动中占主要能量贡献的水动压车窗透过效率远低于声压,导致车窗平均压力脉动难以反映车内乘员人耳风噪感受的正确变化趋势;且由于人耳构造和心理声学的影响,单纯以总声压级为指标不能反映乘员人耳的真实感受,难以应用于风噪优化。因此,本文基
轮胎作为汽车与路面接触的唯一部件,其力学特性直接影响汽车的动力性、操纵稳定性、乘车舒适性、安全性及燃油经济性等性能。汽车轮胎稳态滚动阻力作为轮胎力学特性之一,对汽车的燃油经济性、轮胎使用寿命、驱动制动及汽车操纵性能具有重要的影响,也是轮胎结构设计中的重点研究课题。目前,汽车轮胎稳态滚动阻力的研究主要是以室内台架实验为主,道路实验为辅,其实验方法仍依赖于大型进口实验装置和在标准工况下的分析,而轮胎滚
在汽车轻量化的背景下,铝合金由于具有密度小、比强度高、耐腐蚀等的特点在汽车领域中的应用越来越广泛。而铝合金板材室温成形性较差,温成形技术可以提高金属材料的成形性且成形回弹小、精度高,可用于生产复杂车身零部件。铝合金板材在生产中由于轧制工艺等原因普遍存在各向异性。各向异性的存在使板材在复杂应力状态下变形路径明显区别于各向同性材料,导致各向同性的本构模型仿真预测的失效极限不可靠。同时,温成形过程会导致
随着经济的飞速发展,中国的商用车行业也在蓬勃发展。商用车具有质量大、质心高、体积大等特点,在紧急行驶工况下,车辆容易发生失稳,对车辆的行驶安全性带来巨大的隐患。气压电子制动主动安全控制系统,可以在紧急行驶工况下有效的改善车辆的行驶状态,提高车辆的行驶安全性。因此,基于商用车气压电子制动系统(EBS,Electronic Braking System)对商用车主动安全制动控制进行研究具有重要意义。本
全地形铰接式履带车辆被广泛应用于物资运输、抢险救灾、森林消防等众多领域。本文所研究的全地形铰接式履带车,履带为橡胶履带与刚性履刺通过螺栓连接而成,即刚柔耦合式履带。且履带系统的负重轮为非充气轮胎,本身具有弹性,驱动轮与诱导轮附有尼龙材料,没有托链轮。此外,采用扭杆弹簧独立悬架。因此现有的分析传统履带车辆的方法不能直接用于分析该类型全地形铰接式履带车辆。本文基于该类型行走系统的全地形铰接式履带车辆,
悬架系统实质是由质量-阻尼-弹簧系统组成的衰减地面振动、传递车身与车轮之间力并能保证汽车平稳行驶的多体机械系统。在研究汽车平顺性时,四分之一车悬架可以在一定条件下简化成二自由度机械振动系统。含有质量-阻尼-弹簧的机械系统通过与电气系统比拟,表现出的响应特性称为机械阻抗特性。悬架作为典型的机械系统在路面激励下也表现出一定的阻抗特性,阻抗特性属于系统的固有属性,在频域的范围内反映了悬架的激励力与运动学
全断面隧道掘进机(TBM)具有掘进速度快、安全性高、劳动强度低、施工质量好以及环保等优点,在交通、市政、水电、矿产、民防等隧道工程中被广泛使用。随着我国基础建设投入的不断加大,隧道及地下空间建设的发展不断加快,对TBM的需求也不断增大。盘形滚刀作为TBM的核心部件,在掘进施工过程中直接接触并破碎硬岩,其服役工况十分恶劣,导致盘形滚刀的消耗十分巨大,进而影响施工的效率和成本,成为制约整体施工质量和进
跨介质飞行器是一种可在水和空气两种介质间自由穿行的新概念两栖无人运动平台,具有重要的军事和民事应用前景。跨介质飞行器的研制需要解决空中巡航、入水、水下潜行以及出水四种运动模式下所涉及的关键技术,其中,跨介质飞行器入水过程经受的较大冲击载荷极易造成机体结构损坏、内部元器件失灵以及弹道失稳等一系列问题,研究跨介质飞行器应以何种流体动力构型及采取何种入水方式减小飞行器入水冲击载荷,对提高跨介质飞行器入水
自动驾驶是汽车技术发展的主要方向,而以深度学习为代表、基于数据驱动的目标检测算法是自动驾驶感知系统的重要组成部分,在汽车自动驾驶领域取得了重要进展。使用车载相机采集的图像数据已经被广泛应用于基于深度学习方法的模型训练和目标检测,但也面临着一些问题:一方面,基于深度学习的目标检测方法依赖大量带有语义标签的数据。大量的图像数据采集不仅成本高昂、采集过程的安全性难以保障。而且,图像数据的人工标注也十分繁
粘接技术为高速列车混合材料车体结构件连接提供了有效方式。但随着列车服役时间增加和运行里程的累积,车体粘接结构遭受环境温度、湿度及载荷等多因素的耦合作用,这对高速列车的安全运行带来极大的挑战。明确环境温度、湿度及载荷因素对车体粘接结构的作用机制,探究多种效应耦合作用下的损伤演化规律,合理预测粘接结构的服役寿命,对保障中国高铁可持续发展具有重要的现实意义,为高铁“走出去”战略实施提供重要技术支撑。本文