论文部分内容阅读
在环境问题日趋严重的今天,轨道客车、汽车等产业面对的困难也越来越多。如今,能实现节能减排的有效对策就是汽车轻量化和轨道客车的轻量化,而增加轻量化材料的使用量是能够达到汽车轻量化目的的直接有效的手段。那么钢/铝异种材料的焊接就是眼前即刻就要解决的难点问题。在物理、化学等方面,钢和铝存在较大差异,使得钢/铝异种材料的焊接性极差,焊接接头的力学性能很难达到实际使用标准。钢/铝焊接性问题是制约汽车轻量化技术取得进展的科学技术问题之一。电阻点焊是应用较为广泛的焊接技术。因此,研究钢/铝异种材料电阻点焊,有实际应用价值和理论意义。首先本文研究了SUS301L不锈钢(16Mn低合金钢)/6063-T6铝合金异种材料电阻点焊接头,由其微观组织特点及力学行为可知,不锈钢(16Mn钢)/铝合金电阻点焊接头主要由铝合金熔核、不锈钢(或16Mn钢)熔核和钢/铝界面层组成,本质为熔-钎焊接头。胞状晶、胞状树枝晶、树枝晶和少量等轴树枝晶是铝合金熔核的主要晶体结构;柱状的奥氏体晶粒是不锈钢熔核的主要组成;16Mn钢熔核主要由马氏体、珠光体和贝氏体组成。在点焊过程中,液态铝合金在固态不锈钢(或16Mn钢)表面润湿、铺展并发生Fe、Al原子的互扩散以及界面反应,在钢/铝界面形成Fe-Al金属间化合物(IMC)层。钢/铝界面层为双层结构:舌状Fe2Al5层(靠近不锈钢(或16Mn钢));针状Fe Al3层(铝合金熔核侧)。在拉剪力作用下不锈钢(16Mn钢)/铝合金点焊接头有两种断裂模式(结合面断裂和纽扣断裂)。本试验条件下不锈钢/铝合金点焊接头的裂纹主要在界面IMC层萌生、扩展(结合面断裂模式)。而16Mn钢/铝合金接头,当铝熔核直径小于5.8 mm时,为结合面断裂模式;当铝熔核直径大于5.8 mm时,裂纹主要沿着铝熔核及其热影响区萌生、扩展(纽扣断裂模式)。铝合金熔核和脆硬的界面IMC层是恶化钢/铝接头力学性能的主要原因。研究焊接参数和电极形貌两方面焊接工艺因素对不锈钢/铝合金电阻点焊接头的影响规律。在采用F型电极时,接头铝熔核直径、压痕率以及IMC层厚度随着焊接电流(或焊接时间)的增加而增加;而接头拉剪力随之增加则先增大后减小。在焊接电流4 k A-7 k A(焊接时间100 ms-200 ms)区间,熔核直径的增加导致了接头拉剪力的增大;在焊接电流(焊接时间)继续增加时,接头拉剪力减小,导致这一现象的主要因为是较厚的IMC层和铝熔核中的缩孔。当焊接电流、焊接时间和电极压力分别取值为7 k A、200 ms和2 k N时,接头熔核直径、压痕率、IMC层厚度、接头拉剪力分别为为5.4 mm、30.1%、2.3μm、1.8 k N。研究结果表明,优化电极(与钢侧接触的电极是直径10 mm的圆形电极,与铝合金侧接触的电极为半径35 mm的球形电极)更利于改进钢/铝接头表面质量、组织和性能。并且在焊接电流、焊接时间和电极压力分别为13 k A、300 ms和3 k N的优化焊接参数条件下,获得了熔核直径7.2 mm、压痕率10.9%、IMC层厚度1.4μm及接头拉剪力3.6 k N的钢/铝接头。比F型电极的熔核直径和拉剪力分别提高了33.3%和100.0%,压痕率降低了63.8%。在F型电极条件下采用纳米粉末添加法研究金属(非金属)元素:Cu、Si、Zn、Ti对不锈钢/铝合金点焊接头的影响规律。Cu、Si、Zn和Ti均对接头组织及力学性能有显著的影响:Cu、Si在促进液态铝在固态钢表面润湿铺展性的同时抑制界面金属间化合物的生长,提高了接头拉剪力;Zn在抑制界面反应的同时改善金属间化合物层的性质(生成Fe2Al5Zn0.4),提高了接头的力学性能;Ti使晶粒细化,与Fe形成新物相(Fe2Ti)抑制了IMC的生成,提高接头的力学性能。分别添加1.51 mg Cu、5.78 mg Si、0.97 mg Zn或0.62 mg Ti粉末,钢/铝电阻点焊接头拉剪力分别为3.07 k N、3.55 k N、2.74 k N、2.68 k N,比未添加合金元素的接头拉剪力(1.80 k N)分别提高了70.56%、97.22%、52.22%、44.40%。因此,金属(非金属)粉末添加法是提高不锈钢/铝合金接头拉剪力的重要手段。通过ANSYS软件建立不锈钢/铝合金点焊过程的有限元模型(轴对称),研究其热过程。结果表明,采用F型电极在焊接参数为焊接电流7 k A、电极压力2k N时,钢/铝点焊接头界面上的温度在200 ms时达到最大值(913℃);此时,熔核直径达到最大值(5.5 mm),与试验结果(5.4 mm)相吻合。在热循环曲线的基础上研究不锈钢/铝合金点焊过程中的钢/铝界面反应机制,通过界面金属间化合物生长的热力学分析可知钢/铝界面反应过程中Fe2Al5率先生成,随后再生成Fe Al3。最后,探讨了Cu、Si、Zn和Ti的作用方式及钢/铝界面层的冶金反应过程。Cu、Si、Zn和Ti作用下界面层的生长可归纳为四个阶段:熔化,溶解扩散,形成长大和凝固。