论文部分内容阅读
电力变压器是电网中的主要电气设备,随着国民经济的飞速发展和生活水平的不断提高,电能消耗逐年增加,电力变压器的单台容量和安装容量迅速增长,电压等级也相继提高,体积不断增大。然而,随着全球资源短缺,变压器原材料大幅度涨价,当前形势下迫切需要开发和设计新型电力变压器结构。本文主要以节能降耗为出发点,针对传统电力变压器体积偏大和成本较高的问题,以S9-25000/110型电力变压器为研究对象,根据电力变压器产品的技术指标,对电力变压器的主绝缘结构进行电场数值计算,得出了主空道距离、静电环曲率半径、绕组到铁轭的距离以及静电环绝缘层厚度与主绝缘结构电场分布和电场强度最大值的关系曲线,给出了不同因素变化时,最大场强值变化量的曲线图,并对结果进行了讨论分析,针对不同因素对最大场强值的影响能力,提出了降低最大电场强度和生产成本的方法,为降低电力变压器最大场强值以及降低制造成本提供了依据。为了合理又可靠地确定电力变压器的主绝缘结构,本文采用Fortran 95结合有限元分析软件,编写粒子群算法对变压器主绝缘结构进行了优化设计。对影响110kV级变压器主绝缘结构最大场强值的主要参数——主空道距离、静电板到铁轭的距离、静电环曲率半径、及角环的曲率半径进行了优化设计,并对优化结果进行了分析和讨论,给出了电场分布图和最大电场强度值。结果表明,粒子群算法成功应用于电力变压器主绝缘结构设计,在符合相关技术指标的前提下,缩小了变压器体积,降低了制造成本。针对主绝缘结构优化后的电力变压器进行雷电过电压计算和绕组温升计算,对优化后的结果进行验证,验证结果表明,优化后电力变压器主绝缘结构满足雷电冲击和温升限值的相关要求。本文采用粒子群优化算法设计电力变压器主绝缘结构可以广泛应用于多种等级的电力变压器主绝缘结构设计。