论文部分内容阅读
炼铜工业中的高砷烟灰经碱浸工艺可以使砷有选择性地进入溶液中,实现与其他有价元素的有效分离,而进入碱浸液中的高含量砷也亟待处理。针对该问题,本文采用溶剂萃取法,开展了改性季铵盐从碱性溶液中萃取砷的工艺研究。主要对萃取剂的选择与转型工艺,砷的萃取、反萃及其反应机理,以及萃取剂有机相的循环再生利用等方面进行了研究,获得一个可高效处理碱性体系中高含量砷的闭路循环萃取新工艺。内容如下:(1)本论文选择三辛基甲基氯化铵(TOMAC)为该碱性体系中砷的萃取剂,为提升萃取剂的萃砷能力,实验将Cl-型TOMAC转型为CO32-型TOMAC,本文提出用Na2CO3溶液对Cl-型TOMAC直接进行转型的方案,考察了不同浓度Na2CO3溶液对萃取剂的转型效果,最终选择在25℃,相比1:1的条件下,采用12%Na2CO3溶液对Cl-型TOMAC直接进行转型68次,油水接触时间8min,转型得到的CO32-型TOMAC对碱性溶液中砷的萃取能力得到了很大的提升,单级萃取率可达86.91%。萃取时不同极性改善剂对砷的萃取性能有影响,实验表明含碳原子愈多,对溶液的极性改善效果越好,十二醇比仲辛醇更有利于改善萃取剂的萃砷性能。实验还采用饱和容量法和等摩尔系列法测得萃合比分别为2.67和2.80,结合萃合物气质联用(GC-MS)图谱分析研究了砷的萃取机理,明晰了萃合物的主要成分是(C25H54N)2HAsOS2和(C25H54N)2HAsO2S。(2)通过对负载有机相中砷的反萃剂的筛选,最终择取了能够同时满足高效反萃和直接生成可循环利用的再生有机相两个要求的反萃剂:低浓度H2O2溶液+饱和Na2CO3溶液。实验研究表明:反萃时引入H2O2是实现负载有机相高效反萃的重要原因,微量H2O2(≤4%)可以使该体系中的硫代亚砷酸根迅速氧化成硫代砷酸根,且反萃时H2O2的添加顺序不影响实验结果。As(Ⅲ)与As(Ⅴ)的萃取对照实验揭示了负载有机相中砷的反萃机理:As(Ⅲ)和As(Ⅴ)与季铵盐阳离子缔合能力存在差异,相对来说,As(Ⅲ)与季铵盐阳离子的缔合能力较As(Ⅴ)与季铵盐阳离子的缔合能力更强,这使萃取过程水相料液中的硫代亚砷酸根易与萃取剂有机相中的CO32-进行交换而获得高效萃取率,而反萃过程引入低浓度H2O2将负载有机相中的硫代亚砷酸根氧化成硫代砷酸根后被反萃剂溶液中的CO32-快速交换下来,进而呈现出高反萃率。反萃过程热力学的初步探究结果显示反萃过程属于吸热反应,在0℃35℃温度范围内,温度升高有利于砷的反萃。(3)砷的反萃研究结果显示:以4%H2O2+饱和Na2CO3溶液为反萃剂,在常温25℃,相比1:1,油水接触时间7 min的条件下,砷的反萃率达到99%以上,反萃同时生成了可直接利用的CO32-型TOMAC有机相。通过对整个萃取工艺过程进行红外光谱(FTIR)、核磁光谱(NMR)、紫外光谱(UV-vis)分析,可以论证工艺中转型、萃取、反萃过程的机理,形成闭路循环的萃取工艺流程图直观揭示了循环萃取行为规律,体现出整个萃取工艺过程和流程的特点与优越性,有机相的循环利用实验也体现了再生萃取剂有机相的性能良好。该工艺不仅能使萃取剂有机相得到高效的反复再生利用,且Na2CO3溶液也可以反复再生利用,整体工艺用料简单、不产生废液,呈现出流程短、循环性能好、成本低、效率高的特点。