基于深度神经网络的单幅图像去雾方法研究

来源 :燕山大学 | 被引量 : 0次 | 上传用户:gengyunshe
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
单幅图像去雾任务作为计算机视觉任务领域中的重要组成部分,在目标跟踪、无人驾驶等视觉任务中都承担着重要的作用。因此,在多样的计算机视觉任务中,如何在单幅图像中高效地获取更好的去雾效果成为单幅图像去雾任务中的关键问题,同时也是计算机视觉领域中一个亟待解决的难题。通过深入分析国内外单幅图像去雾方法的研究现状,同时结合深度学习思想及计算机视觉的相关知识,对如何在单幅图像中高效地获取更好的去雾效果进行了深入研究。首先,针对现有利用卷积神经网络作为基础网络的图像去雾方法无法利用有雾图像的深层细节特征,导致训练的去雾模型去雾效果不理想的问题,提出利用金字塔卷积模块将包含多尺度卷积核的金字塔卷积模块融入到双残差模块中,构造多尺度双残差模块。利用不同尺度的卷积核提取有雾图像深层的特征信息。为了减少网络参数,提高网络的训练速度,将空间注意力机制融入到已带有通道注意力机制的双残差模块中构造新的去雾网络来实现单幅图像去雾的任务。其次,为了使网络根据有雾图像中雾的分布特征利用不同的注意力机制获取更好的去雾效果,提出一种多注意力残差密集结构融入网格网络中实现图像去雾的方法。通道注意力可根据有雾图像的特点为不同通道的特征图分配相应权重;空间注意力可使去雾网络更加关注景深较大的雾;引入像素注意力对于有雾图像中不同浓度的雾分配相应的权重,在视觉及评估指标上提高单幅图像的去雾效果。再次,针对目前的单幅图像去雾方法虽然在合成图像上的去雾效果较为理想,但对于真实有雾图像仍有大量雾残留的问题,本文在构造融合通道注意力、空间注意力、像素注意力及残差密集块的Multiple Attention Grid Network(MAGNet)的基础上增加图像增强处理,在去雾网络之后引入导向滤波去除真实图像中残留的雾使得去雾后图像更加平滑且保留更多边缘细节信息,从而提高去雾图像整体的视觉效果。最后,针对所提的两种去雾方法分别基于室内数据集Indoor和室外数据集Outdoor以及Middlebury数据集进行了相应的实验验证与结果分析。实验部分分别针对合成有雾图像与真实有雾图像做了去雾结果的验证与分析。
其他文献
在神经科学和生物医学信息处理领域,锋电位分类是从细胞外采集的信号中提取单个神经元放电信息的关键步骤。锋电位是神经元细胞膜上快速且短暂的电位变化,是大脑中神经元进行信息传递的主要途径。尽管目前已存在许多锋电位分类方法,但在准确性和鲁棒性方面仍有待提高。因此,本文提出了基于深度学习的锋电位分类方法,以更有效地实现锋电位分类,对于研究大脑的工作机制具有重要意义。首先,提出了一种基于一维卷积神经网络(CN
光纤传感器由于其体积小、不受电磁干扰、环境适应性强等特点,被广泛应用于压力测量。本文基于游标(Vernier)效应和保偏光子晶体光纤的Sagnac干涉特性,提出了一种利用F-P腔增敏的分离型压力传感结构,并将传统Sagnac干涉环改良成了直线型,使传感器具有更简单的结构。该传感系统为全光纤结构,具有在高压环境中工作的潜力。论文的主要内容如下:首先,对比了几种光纤压力传感器的优缺点,分析了Sagna
压缩感知提供了一种新型信息处理方式,它充分利用信号的稀疏性,以远低于Nyquist的采样率进行随机采样以获取离散样本,然后通过重构算法实现对原始信号的良好恢复。压缩感知主要包括三个方面的内容,其中重构算法的设计是压缩感知成功恢复信号的关键。近似消息传递算法的特点是计算复杂度低,重构精度高,是一种高效的重构算法。该文应用近似消息传递算法对图像进行压缩感知重构,具体工作如下:首先,针对基于K-mean
随着我国逐渐步入老龄化社会,心血管疾病患者持续增加,使得心脏监护系统需求也在不断提高。如何利用计算机辅助技术对心律失常进行精准检测和分类是心血管疾病诊断中的研究热点之一。在进行心律失常识别时,传统上是心脏病专家依据患者的心电图来进行观察和分析,这样的方式容易产生漏检和客观性的结论,因此本文考虑采用机器学习和深度学习分类算法,对心律失常进行了以下研究:首先,针对在单个心跳的患者内的心律失常分类问题,
随着我国经济和信息科技的发展,汽车的普及率大大提高,然而另一方面各种交通事故也随之而来。为了应对交通事故的频繁发生,高级驾驶辅助系统(TSR)便应运而生,它可以帮助驾驶员做出正确的驾驶操作,从而有效地避免交通事故的发生。在TSR中,对交通标志的准确识别是一个核心问题,具有重大研究意义。为了进一步提高交通标志识别的准确率和计算效率,本文的主要工作如下:首先,为了解决交通标志识别算法中GTSRB数据集
小目标检测是目标检测任务中一个具有挑战性的分支,其目的是对图像中的小像素目标进行分类和定位。随着深度学习的发展,基于卷积神经网络的小目标检测算法取得了巨大的进步,但由于检测的环境复杂、信息量少以及分辨率低等问题,小目标检测算法还有待发展。该文围绕基于深度学习的小目标检测算法进行分析和研究,具体研究内容如下:首先,为了提升小目标检测的性能,该文提出基于金字塔卷积与注意力机制的小目标检测方法。该方法将
文本生成图像问题是图像生成方向的一个重要分支,给定一个文本描述,可以生成符合文本描述的图像。文本生成图像的方法主要是基于生成对抗网络的,目前的一些方法经常出现模式崩塌问题,生成的结果缺乏多样性。本文为了提高生成图像的质量做了以下工作:首先,为了解决训练过程比较自由缺乏约束的问题,本文提出了语义分类器生成对抗网络。将文本预处理后得到文本向量,与随机噪声连接在一起输入到生成器中,通过卷积层生成图像。然
双线性广义近似消息传递算法是广义近似消息传递算法的拓展,是一种具有高性能的迭代阈值算法。本文主要就双线性广义近似消息传递算法的研究及其应用进行了以下几方面的研究工作:首先,研究了一种基于双线性广义近似消息传递低秩矩阵填充的图像去噪算法。该算法利用自然图像中非局部相似块形成的矩阵具有低秩性这一性质,将匹配图像块的去噪问题转化为低秩矩阵填充问题。实验结果表明,该算法能够有效去除图像中的混合噪声,与经典
石油作为当今世界工业第一能源要素,被称为“工业的血液”。石油资源关系到国家能源安全,对社会发展起着至关重要的作用。我国正处于经济发展期,对石油的需求量与日俱增,但是我国石油储量有限,许多老油田已全面进入开发中后期,开发难度增大,需要完善开采技术来挖掘剩余油潜力。注水是补充油田能量的重要技术手段,为解决油田开发后期测调工作量大、注水合格率下降快等问题,发展了智能分层注水工艺。基于智能分层注水工艺现状
近年来,扭转作为监测应力及内部状况的一个重要参数,受到了国内外研究学者的广泛关注。其中,与电学和磁学扭转传感器相比,光纤扭转传感器具有结构简单、易于制备、灵敏度高以及抗电磁干扰能力强等优点,被广泛应用到户外安全检测以及桥梁监测等领域之中。本文在分析总结不同结构的七芯光纤传感器国内外研究现状的基础上,采用七芯光纤作为传感单元,制备了两种不同结构的七芯光纤微腔结构传感器,并在顺时针及逆时针两方面对其扭