论文部分内容阅读
图的l-路和以及顶点较少的图的超欧拉性
【机 构】
:
山西大学
【出 处】
:
山西大学
【发表日期】
:
2018年01期
其他文献
矩阵广义逆理论有着十分广泛的应用领域和研究背景.它在数值线性代数、数值分析、最优化、控制论、数理统计、微分和积分方程等领域都有重要的应用.在研究最小二乘问题、长方
优化是应用数学中一个重要研究领域,群智能优化算法是优化中一个重要的研究方向;伴随着计算机技术的发展,群智能优化算法在越来越多的科技领域得到应用和重视。回溯搜索优化
在论文中,我们将研究三类分枝过程模型,即两性的Galton-Watson分枝过程模型,人口数相依的受控分枝过程模型,以及随机环境中的人口数相依的分枝过程模型. 在引言中我们给出了本
对称锥规划是数学规划中较为活跃的一个分支,它在交通运输,经济管理,信息科学和控制理论等学科中有着广泛的应用.另外,线性规划,半定规划以及二阶锥规划都是对称锥规划的子问
本论文主要研究了赋权图中的路和圈的问题.赋权图是指每条边都有一个非负实数对应的图.这个实数称为这条边的权.一条路(圈)的权是指其边的权的和.一个顶点v的赋权度d(v)是指
本文研究了Heisenberg群上相应于p-sub-Laplace算子△的不等方程和由广义Baouendi-Grushin向量场构成的退化椭圆し不等方程非平凡弱解的不存在性.在第一章,我们通过改进欧氏
Bulajich等学者建立了一种条件较强的相对A等价关系,研究相对映射芽的通用开折的性质.本文用经典奇点理论的方法研究有关相对映射芽的形变问题.为了简化问题,本文考虑的是保
有时滞的微分方程的振动性和具有振动位势的二阶非线性常微分方程的区间强迫振动性曾经被许多学者所研究,并且有许多很好的结果[1-12,44];而本文却给出了具有振动位势的二阶非线
矩阵指数函数是矩阵论的主要部分,它在微分方程和自动控制理论中有着重要的运用.本文从李群方法入手,研究矩阵指数函数的Rodrigues系数的计算方法. 我们提出,在当矩阵的特征值