【摘 要】
:
相比于传统的化学能发射技术,电磁发射技术具有发射速度更高、发射过程更受控、使用能源清洁等优点。在目前已有的导轨式、线圈式和重接式电磁发射技术中,重接式发射技术起步最晚,但从原理上克服了导轨式发射的枢轨烧蚀问题,以及线圈式发射径向电磁力大于轴向电磁力等问题。并且重接式发射技术综合了导轨式发射能实现高速直线发射和线圈式发射能发射大质量发射体的优点,因此重接式发射技术具有更高的应用价值和更广泛的应用领域
论文部分内容阅读
相比于传统的化学能发射技术,电磁发射技术具有发射速度更高、发射过程更受控、使用能源清洁等优点。在目前已有的导轨式、线圈式和重接式电磁发射技术中,重接式发射技术起步最晚,但从原理上克服了导轨式发射的枢轨烧蚀问题,以及线圈式发射径向电磁力大于轴向电磁力等问题。并且重接式发射技术综合了导轨式发射能实现高速直线发射和线圈式发射能发射大质量发射体的优点,因此重接式发射技术具有更高的应用价值和更广泛的应用领域。为了获得更高的发射速度,作为研究热点的多级发射装置所占空间庞大、制作成本较高,必须提高发射效率才能保证装置具有更好的综合性能。本文以机械强度较高的箱型驱动线圈和板状电枢构成的多级重接式发射装置为研究对象,建立了多级重接式电磁发射装置加载过程的动态电磁场模型和考虑级间耦合效应的动力学方程,为效率优化设计提供理论基础。对上述模型进行仿真求解,计算结果表明,多级重接式发射装置的动态加载特性取决于电枢运动状态,电枢加载速度越高,耦合磁场的削弱作用越强,电枢受到的加速电磁力峰值越小,反向电磁力出现位置越靠前,导致各级速度增量逐渐减少,装置发射效率随级数的增加逐渐减少。针对效率优化设计,本文通过装置的结构优化提高了单级发射装置发射效率,并提出双绕式驱动线圈结构。在单级发射装置结构优化的基础之上,计算不同加载速度下装置参数对发射效率的影响,结合多级发射装置触发策略得到多级装置参数的动态优化策略,优化后的百级装置发射效率从4.3%提高到17.65%。此外,本文提出了一种基于导磁铁芯的磁场调控方法,通过增加E型导磁铁芯提高电枢截断的磁力线数量,使电枢受到的加速电磁力增大,从而提高装置最大发射效率。最后,本文搭建了多级重接式电磁发射实验平台,实验首先验证了触发位置、充电电压、线圈结构对发射性能的影响,实验结果验证了仿真计算方法的可靠性。然后对添加导磁铁芯的两级发射装置进行实验研究,验证了导磁铁芯对发射效率的提高作用。而后根据效率优化结果设计并搭建了八级实验装置,将总重12kg的电枢与负载加载到了4m/s。实验结果表明本研究可为多级重接式电磁发射装置效率优化问题提供参考。
其他文献
随着人们消费水平的增长,全国机动车保有量持续增加,交通拥堵已严重影响人们的正常生活。交通拥堵检测作为缓解城市拥堵的关键技术之一,具有重要的理论研究意义。由于现有的拥堵检测模型标准不统一,各指标间关联具有模糊性,很难将其综合应用于一个检测模型中,因此,构建能够综合各个指标的交通拥堵检测模型,具有重要的实际应用价值。为了解决上述问题,本文采用了一种模糊层次分析方法,该方法通过建立决策层次分析模型,基于
C/SiC复合材料因兼具耐高温、比刚度高、抗氧化等特点,广泛应用于航空航天领域。然而制造成型过程中产生的初始缺陷及氧化损伤等往往导致其细观结构具有很强的随机性,造成了材料损伤退化行为的非线性和力学性能的离散性,极大限制了材料的应用。因此,开展C/SiC复合材料细观特性以及损伤行为研究具有重要的理论和应用意义。本文以二维编织C/SiC复合材料为研究对象,针对其力学行为的非线性和离散性,在细观和宏观尺
火炮身管是火炮的核心部件,其质量影响火炮的射击精度和寿命。对镗削后火炮身管的孔径、圆度、壁厚及直线度的测量是评价其质量的关键。火炮身管作为大长径比的孔类零件,目前的检测手段是人工对上述几何尺寸单独测量,存在测量精度低、测量效率低、无法满足身管全长几何尺寸测量等问题。本文提出了火炮身管孔径、圆度、壁厚、直线度的集成测量方法,突破了机器人在测量过程中的运动控制关键技术,研制了集成测量的管道机器人,开发
道岔是列车行进过程切换线路的重要装置,我国地形特殊,铁路交汇点众多,这使得我国道岔数量多,运行频次高。道岔又是铁路三大薄弱环节之一,它具有寿命短,结构复杂,限制车速、维护成本高的特点。道岔一般包含转辙机、尖轨、心轨、基本轨、辙叉和护轨等机构。转辙机是道岔执行变道工作的核心电气设备,其通过电机驱动推动或拉动尖轨,使尖轨和基本轨密贴或者斥离,实现变道功能。转辙机不仅有搬动尖轨位置的功能,还兼具实现道岔
随着近两年欧美国家对集成电路行业控制的进一步收紧,芯片成为了“卡脖子”的问题,中国高铁作为自主创新的领跑者,早已开始了基于国产芯片的自主化列控设备和相关技术的攻关。面对这样一个功能复杂的庞大分布式交互系统,高铁国产化替代后的系统级验证工作也面临着巨大挑战。在此大背景下,本课题以高铁系统中的地面电子单元(LEU)为研究对象,结合了集成电路行业形式化与模拟验证的技术和方法,对国产化替代后的关键设备进行
作为现代陆战中人员和物资的移动载体,装甲车辆是保障军队后勤运输任务的重要技术装备,其性能对于军队完成日常训练和战斗任务意义非凡。相比于民用车辆,装甲车辆除了受到来自非铺装路面引起的随机振动外,也时刻面临来自地雷或简易爆炸装置产生的爆炸冲击波的威胁。然而,针对抵御爆炸冲击波而设计的被动座椅悬架和针对特定工况设计的半主动座椅悬架均难以有效兼顾装甲车辆对平顺性和抗爆性的不同要求。鉴于此,本文提出一种可有
桥梁是陆上交通网中易受地震破坏的薄弱结构,基于强度的传统桥梁抗震设计方法导致桥梁抗震韧性不足,存在震后残余变形过大、可恢复性差等问题,将影响救灾物资的运输,甚至造成巨大的间接经济损失。连续梁桥由于具有整体性好、行车平顺、经济性好等优点是目前国内应用最多的桥型之一,考虑到现役连续梁桥数量巨大的实际情况,对其进行抗震加固以提高其抗震韧性是亟需解决的问题。基于能量平衡的抗震设计方法(后称等效能量法)能充
随着城市化进程的推进和交通工程的快速发展,目前城轨交通尤其是地铁交通已经成为了各个城市的主流交通方式之一。但地铁结构并非完全绝缘,其中会有部分电流泄漏,即为杂散电流。地铁工程处在杂散电流与地下水溶蚀的复杂侵蚀环境中,这会对其工程结构安全性带来潜在的隐患。那么模拟地铁工程的侵蚀环境,研究其主体结构水泥基材料在杂散电流作用下的抗溶蚀性能具有重要的工程价值。而粒化高炉矿渣作为常用的矿物掺合料之一,凭借其
等离子体隐身技术是指产生并利用在武器装备(如飞机、舰船等)表面形成的等离子体来实现规避雷达探测的一种隐身技术,是一种针对雷达信号的主动隐身技术,具有使用灵活、宽频效果良好、不影响结构外形和启动特性等诸多优势,已展现出巨大的发展潜力,是进一步提升隐身性能的有效技术途径。在等离子体隐身技术中,等离子体的产生方式多样。因为电子束等离子体有等离子体与发生器分离的特点,相比其他等离子体源,其产生的等离子体空
随着经济和社会的发展,旧桥堵车现象频繁发生。采用钢悬臂拓宽混凝土盖梁的拓宽方式具有无需新建桥墩、能大幅提升通行能力、适用性广的优点,可为解决旧桥堵车问题提供一个新的思路。由于该拓宽结构的破坏机理尚未明确,需对其受力机制进行研究。针对实际工程中盖梁承受从支座传来的变化荷载,还需进行相关的疲劳试验研究拓宽混合结构的疲劳性能。首先,本文选择会对结构力学性能会产生影响的5类材料参数作为影响因子进行了正交试