【摘 要】
:
本文利用谱配置方法求解一类带弱奇异核的和非线性的Volterra型积分微分方程,并且构造高精度算法,着重分析该方法的误差估计和收敛性,并进行数值实验,验证所给方法的有效性。第二章,用Legendre谱配置方法对非线性Volterra-Fredholm-Hammerstein积分方程进行求解。并且对于所给的数值格式和误差进行了分析,即当核函数充分光滑时,计算所得数值格式的L2范数和L∞范数误差呈指数
论文部分内容阅读
本文利用谱配置方法求解一类带弱奇异核的和非线性的Volterra型积分微分方程,并且构造高精度算法,着重分析该方法的误差估计和收敛性,并进行数值实验,验证所给方法的有效性。第二章,用Legendre谱配置方法对非线性Volterra-Fredholm-Hammerstein积分方程进行求解。并且对于所给的数值格式和误差进行了分析,即当核函数充分光滑时,计算所得数值格式的L2范数和L∞范数误差呈指数收敛。而且给出了此方法的收敛阶,获得了相应的误差分析结果。最后,由数值例子验证了理论结果的正确性和方法的有效性。在第三章,对带弱奇异核(t- s)-1/2的Volterra积分方程用Chebyshev谱配置算法进行了研究。由于奇异核的特殊性,我们选择了带权为ω-1/2,-1/2的Chebyshev谱配置算法来逼近积分项,从而得到高精度的数值解。最后,对Chebyshev谱配置方法所得到的数值格式和数值解进行误差分析,得到了基于L∞和L2的谱精度收敛性,而且利用数值实验验证了该方法的有效性。第四章是第三章的推广,我们将奇异核(t - s)-1/2的Volterra积分方程推广为奇异核为(t-s)-μ的Volterra积分方程,利用带权的Jacobi谱配置方法来逼近积分方程,得到了该方程的Jacobi谱配置方法的数值格式。为了得到Jacobi谱逼近算法的误差分析和收敛性分析,我们引入了分数阶微积分方程的定义,并且利用分数阶微积分方程的一些性质,来证明基于Jacobi谱配置算法的误差估计和收敛性分析。得到了基于L∞和L2的谱精度收敛,数值实验也验证了该方法的有效性。第五章,将第四章的研究继续进行推广,将带弱奇异核的Volterra型积分微分方程推广为分数阶微分积分方程,并且将分数阶微分积分转化为第二类带弱奇异核的Volterra型微分积分方程,然后,利用Jacobi谱配置方法对它进行求解,最后得到了在L∞空间和Lw2空间上的误差估计,数值实验结果表明Jacobi谱配置法对带弱奇异核的分数阶Volterra型积分微分方程的有效性。
其他文献
有限元方法因其具有完善的数学理论及对不规则几何区域较强的适应性等特点,被广泛应用于科学与工程计算领域。虽然对有限元方法已经有大量的研究工作,但仍有一些问题值得进一步探讨。标准有限元先验误差估计只给出了网格尺寸与有限元误差之间的渐近关系,但没有体现网格质量(如单元形状和大小、网格对称性)对有限元解逼近精度的影响。本文借助单元分析,构造了两个可计算量Ge和Gv来刻画网格质量和有限元误差之间的关系,从而
大量研究表明具有非局部特性的分数阶微分算子非常适用于描述具有记忆特性和遗传性质的材料.因此,近年来分数阶微分方程得到了广泛的关注和应用.然而很多分数阶微分方程的解析解是很难得到的,于是在实际应用中数值模拟成为研究分数阶微分方程的一个重要手段.本文致力于二维Riesz空间分数阶扩散方程及分数阶Sine-Gordon方程的有效数值格式及快速算法的研究.第二章中,采用ADI-CN格式将二维Riesz空间
Allen-Cahn方程作为描述相场模型最基本的方程之一,是用于模拟在一定温度下二元合金相位分离的模型。Allen-Cahn方程在实际问题中的应用非常广泛,如晶体生长、相变、图像分析、晶粒生长、材料科学中的界面动力学等。而且在实际问题中复杂的Allen-Cahn方程不易求得精确解,故而,如何数值求解该方程就变得尤为重要。在第三章中,为了数值求解Allen-Cahn方程,我们采用了线性元对其进行空间
Poisson-Nernst-Planck(PNP)方程是由Poisson方程和Nernst-Planck方程组合而成的强耦合非线性偏微分方程组.此类方程广泛用于描述生物化学的静电扩散反应过程、半导体的离子输运以及生物细胞膜间的离子转换等应用领域.有限元方法是求解PNP方程的一种流行离散化方法,因此,研究PNP方程的有限元误差估计及其快速算法具有重要的理论意义与实际应用价值.本文主要开展了以下三个
分数阶微积分在生物学、生态学、力学、材料学及控制系统等领域中起着越来越重要的作用。本文主要研究空间分数阶Klein-Gordon-Schr(?)dinger(KGS)方程组的守恒差分格式、Fourier谱格式,空间分数阶Schr(?)dinger方程的辛差分格式,及一类两边分数阶扩散方程的谱配置方法。在第二章,给出一些符号和分数阶算子的定义以及文中需要的一些引理。在第三章,首先给出带低次Yukaw
铁电薄膜因其优越的性能越来越受到大家的关注。利用铁电薄膜制作的电子元器件,工作在辐射环境中时会受到辐照的影响而导致性能下降。当器件工作在航天、航空等领域时,由于在航空和航天环境中包含不同的高能射线粒子,这些射线会对工作在其中的电子系统、电子元器件等产生各种损伤效应,最终导致航天器出现功能失效、甚至会发生航天器坠毁,所以要求电子器件拥有较强的抗辐射性能。铁电抗辐射性能研究,目前主要集中在宏观性能随着
多铁材料同时具有铁弹、铁电、铁磁等多种序参量,且这些序参量通过耦合能够产生一些新的效应,比如磁电耦合效应,使得其在传感器、多态存储、自旋电子器件等领域具有广阔的应用前景。对于多铁纳米材料,它不仅能在纳米尺度上呈现出磁电耦合效应,更能促进器件实现多功能化、集成化和微型化,近年来受到广泛的关注和研究。对纳米尺度多铁材料的力电磁耦合行为进行研究,不但可以加深对多铁材料复杂的物理和力学现象的理解,而且能为
铁电材料是一种功能材料,其具有的优异电学和光学性能孕育出了它广阔的应用前景。电畴翻转是铁电材料显示宏观非线性本构行为的微观物理机制,铁电畴的取向直接决定着铁电材料的物理性质和应用方向,而电畴翻转后不同取向铁电畴体积分数的变化则直接与铁电材料及其器件的效率和稳定性挂钩。因此,确定铁电材料的畴取向及其体积分数(分布特性)对铁电器件工程至关重要。多铁性材料作为一种特殊的铁电材料,除具有铁电性外,还兼具有
软件定义网络(Software-Defined Networking,SDN)是一种新型网络体系结构,它实现了网络设备中控制逻辑与数据转发功能的分离,采用集中式的控制方式控制整个网络,并向上层应用提供开放的可编程接口。这种设计模式极大地简化了网络策略的部署,缩短了网络应用的开发周期,在数据中心和云计算中得到了广泛的应用。但是,这种网络体系结构也引入了新的安全威胁。本文将对SDN体系结构中的若干安全
热障涂层(Thermal Barrier Coatings,TBCs)因为耐高温、高隔热、抗腐蚀等优异性能,已成为航空发动机涡轮叶片等热端部件不可缺少的热防护材料。然而,在含有杂质颗粒的高温、高速燃气环境下服役时,会因为界面氧化、颗粒冲蚀、CMAS腐蚀(钙镁铝硅等金属氧化物的混合物,简称CMAS)等多种因素导致涂层剥落。其中,CMAS腐蚀指高温下钙镁铝硅混合氧化物熔融、渗透到涂层中,引起涂层结构、