相对论等熵欧拉方程组熵解的非相对论整体极限

来源 :上海交通大学 | 被引量 : 0次 | 上传用户:leeyongfan
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文讨论子由粒子数守恒和动量守恒组成的相对论等熵欧拉方程组熵解的非相对论整体极限。当状态方程是p = κ 2 ρ时,利用Glimm格式,通过在相平面上对非线性波的整体性态的细致分析及精确估计,证明了当c →∞时,相对论等熵欧拉方程组的熵解的极限是相应的经典(非相对论)等熵欧拉方程组的熵解。 我们从介绍一般守恒律方程(组)相关概念、定义和基本定理开始,对物理上导出的等熵相对论流体力学方程组进行数学上的定性描性。其后我们分的方程组的激波曲线和疏散波曲线在以黎曼不变量为坐标的相平面上几何性态,奠定了使用Glimm差分方法的基础。最后利用Glimm差分格式构造近似解,通过对初等波相互作用的估计(所有的估计与光速c ( ≥c 0)无关),对近似解子序列紧性的研究,得到柯西问题的整体熵解在c →∞时的极限即为相应的经典的等熵欧拉方程组的熵解。
其他文献
在本文中我们将关于多维单边界反射倒向随机微分方程的结果扩展到了双边界的情况。首先,我们运用了不动点原理证明了多维双边界倒向随机微分方程的解的存在唯一性,这里解的每
分形曲线是分形几何中的一个重要研究方向, 利用分形曲线可以刻画自然界中的很多自然现象. 维数是研究分形曲线或曲面过程中的重要研究内容, 通过维数可以更好地了解图形性质
设X1,X2,…,Xn为独立指数分布随机变量,其中X1,…,Xp服从参数为λ的指数分布,Xp+1,…,Xn服从参数为λ*的指数分布,记q=n-p≥1。定义次序统计量X1∶n≤X2∶n≤…≤Xn∶n的第i个间隔为Di
在此论文中,我们研究了带有q-Laplacian算子的非线性波动方程的解的爆破性质;以及在一类双曲型弹性接触问题中得到了一些结果。 在第二章中,我们分别给出了带有q-laplacian算
对两个正整数1≤d≤k,图G的k/d圆着色是映射c∶V(G)(→){0,1,...,k-1}满足:当uv∈E(G)时,d≤|c(u)-c(v)|≤k-d.图G的圆色数,记作χc(G),是最小的有理数k/d使得图G存在一个k/d圆着色.
  本文考虑粘性不可压缩流体的非自治的二维Navier-Stokes方程的解的长时间行为.让Ω表示R2中具有光滑边界()Ω的有界区域,未知函数u=(u1,u2)是速度场,p是压力项,它们由下面的
水资源是基础自然资源,是生态环境的控制性因素之一;同时又是战略性经济资源,是一个国家综合国力的有机组成部分。水资源短缺已严重制约了国民经济的发展,同时我国水资源的浪
常微分方程的理论研究有着悠久的历史,到现在已经得到了大量的应用结果.在科学技术、经济迅速发展的信息时代,常微分方程有着十分广泛的应用.它与物理学、力学、生态学、人口统
DGMRES算法是用来求解相容或不相容,且具有任意指标的奇异线性系统的一种主要方法,采用的是修改的Gram-Schmidt方法来执行Arnoldi正交化过程,但这种方法有数值上不稳定的特点,在
本文研究如下形式的具有Watt型功能性反应的捕食者—食饵系统的动力学行为(公式略)首先我们利用平面定性分析的方法讨论了该系统正平衡点的存在性和稳定性;极限环的存在性;然