复合算子与VOLTERRA型算子乘积的差分

来源 :天津大学 | 被引量 : 0次 | 上传用户:otto0127
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
函数空间上的算子理论已成为人们研究的热点,由于研究的载体是函数空间,所以这些常见的算子必是由某些函数导出的,从而我们需要探讨这些算子的性质与它们的诱导函数有怎样的内在联系.本文主要研究了单位圆盘上的由有界解析空间到Bloch空间及小Bloch空间的复合算子与Volterra型算子的乘积算子差分的性质,给出了它有界性和紧致性的充要条件.   本文共分为五章来详细论述上述问题.   第一章为引言,介绍了问题研究的背景和研究的必要,以及本文的主要工作.   第二章主要给出了一些相关的定义和基本的引理.这些定理及定义都是解决后面问题必备的基础知识和重要工具,在下文中将不再证明而直接应用.   第三章是对一类乘积算子的性质的研究,主要用已知的引理和结论给出了此类算子的有界性和紧致性的充分必要条件,并以定理的形式给出具体的证明.   第四章与第三章类同,是对另一类算子积的研究.   第五章是对整篇论文的总结,并提出了一些尚未解决的问题和进一步研究的方向.
其他文献
张量分析是研究理论物理、连续介质力学、科学与工程等领域的一个重要工具.论文介绍了各向同性Descartes张量,它是一类特殊的张量.本文主要就其表达式展开研究.本文首先介绍
地震属性是储层参数横向预测的重要手段,在不同的地区如何准确提取目的层属性、如何进行属性优化、如何建立储层参数与多种地震属性间的关系,这些都是决定储层预测成功与否的
本文仅考虑无向有限简单图,对于一个给定的图G,我们分别用V(G),E(G),δ(G),△(G)和mad(G)来表示图G的顶点集合,边集合,最小度,最大度以及最大平均度.  图G的k-injective染色是指一
随着just-in-time系统的广泛应用,关于交货期指派的排序问题已成为一个非常活跃的研究领域,并且已经扩展到对交货窗口指派的研究.在本文中我们研究的公共交货窗口都是待定的,
本博士后报告从数学角度研究了气体动力学中几种含有亚音速流及跨音速激波的特殊流动模式的唯一性。这些流动模式包括:   ●三维无限长扩张管道内定常亚音速可压缩位势流;
本文主要分两部分。第一部分系统研究了一阶线性ODE系统的单值同构方法,研究了Painlevé方程的对应的一阶线性ODE系统的单值同构形变,导出Lax对,阐明了Painlevé方程与单值同构
本文研究4维球面S4到CPn的常曲率弱Lagrangian极小浸入(ρ):S4→CPn,其诱导度量ds2具有常曲率c.文中证明了存在一个整数s≥1使得c=4/[S(S+3)].浸入(ρ)被两个四元齐次多项式f
数学模型对描述种群增长起着重要的作用,近年来,在对描述生物种群增长的模型的研究也已经取得了大量的结果。这就意味着由随机微分方程描述的生物模型对现实世界中应用的重要性
无网格Galerkin方法(EFG)是近年来迅速兴起的一种数值方法。该方法构造形函数时只需要具体的节点信息,而不要网格,因此可显著减少因网格畸变带来的困难。在涉及大变形、自由
经典的Besov空间和Triebel-Lizorkin空间在偏微分方程的研究中起了非常重要的作用。J.Bourgain,T. Tao,C.E.Kenig,T.Kato等人将它们运用到非线性发展方程的研究中,获得了令人瞩