【摘 要】
:
当今世界无线通信技术的发展对数据传输提出了更大的要求。太赫兹频段拥有大量未使用的频谱资源,且传输容量大,速率快,太赫兹通信研究从而引起人们广泛的关注,而对太赫兹天线的研究是太赫兹通信研究至关重要的环节。片上天线是为了解决太赫兹通信系统集成收发问题。但是目前太赫兹片上天线存在着带宽窄、辐射效率低以及实际增益低等相关问题。如何提高太赫兹片上天线的性能是一个亟待解决的问题。本文主要研究利用人工磁导体(A
论文部分内容阅读
当今世界无线通信技术的发展对数据传输提出了更大的要求。太赫兹频段拥有大量未使用的频谱资源,且传输容量大,速率快,太赫兹通信研究从而引起人们广泛的关注,而对太赫兹天线的研究是太赫兹通信研究至关重要的环节。片上天线是为了解决太赫兹通信系统集成收发问题。但是目前太赫兹片上天线存在着带宽窄、辐射效率低以及实际增益低等相关问题。如何提高太赫兹片上天线的性能是一个亟待解决的问题。本文主要研究利用人工磁导体(AMC)的方式来增强天线的性能。本文的主要研究工作与成果如下:(1)仿真研究几种AMC单元结构的太赫兹谐振特性。围绕中心谐振频率340GHz,仿真研究了适用于构建AMC阵列的电磁带隙结构单元的谐振特性,以及结构单元尺寸变化对谐振特性的影响规律,为构建适合于片上太赫兹天线应用的AMC阵列结构奠定基础。(2)研究了加载AMC结构对片上八木天线的影响。首先研究了片上八木天线的太赫兹辐射性能,优化了结构参数;由于AMC结构对表面波具有良好的抑制作用,片上八木天线加载AMC结构之后带宽增加了2GHz,实际增益约增加了0.3dB,旁瓣水平降低了2.3 dB;研究了片上天线所处的位置对辐射性能的影响,发现将天线置于片上的前端可以有效降低介质的影响,获得更好的性能;探索了太赫兹芯片间通信具有可行性。(3)研究了加载AMC结构对偶极子天线辐射性的影响。仿真结果表明,具有AMC结构的半波偶极子天线的实际增益达到5.35dBi,提升了约为3.7dBi,且副瓣也有了大幅度的降低。研究了具有AMC结构的片上折叠偶极子天线的辐射特性,发现天线的带宽拓展到20GHz,并且折叠偶极子天线的辐射效率有一定的提升,实际增益增加了约1dB。最后研究了加载雪花形去孔以及六边形AMC结构的片上单极子天线辐射特性,加载AMC结构之后,该天线的带宽拓展31.3GHz,实际增益提高了0.7dB。
其他文献
传统的利用谐振腔作为微波谐振装置的ESR(电子自旋共振)测试系统只能测试粉末和液体样品,无法在不破坏样品的情况下测试薄膜样品。为了不破坏样品的条件下对薄膜ESR信号进行测试,本论文设计了以直接装样型谐振腔和微带谐振器作为谐振装置的两种测试系统来对薄膜样品进行在线表征。第一种系统为锁相放大器作为信号终端的测试系统;第二种系统为矢量网络分析仪作为信号终端的测试系统。锁相放大器的测试系统利用微波源和功率
信息技术的前进步伐不断加大,造就了集成电路产业的蓬勃发展,促使电子封装成为当前的热门领域,寻求性能优异的LTCC封装基板材料迫在眉睫。镁铝硅微晶玻璃因具有优良的性能逐渐成为关注的焦点,但是目前还存在烧结温度过高,难以和低熔点电极共烧以及抗弯强度与热膨胀系数不稳定等问题。因此,本文以镁铝硅微晶玻璃为对象,通过掺杂改性,研究了不同元素对本体系晶相组成、微观结构以及综合性能的影响,并对烧结和析晶过程进行
以InGaZnO为代表的氧化物半导体薄膜晶体管具有电子迁移率高、截止电流低、稳定性强、均匀性好、可见光透明和制备温度低等诸多优点,有望取代传统非晶硅和低温多晶硅成为下一代主流的薄膜晶体管。基于InGaZnO薄膜晶体管的电路不仅可以应用到显示领域,还可以应用于柔性电子、传感器等多个领域。由于p型氧化物薄膜晶体管的电学性能普遍较差,难以匹配n型氧化物薄膜晶体管的电学性能,故当前报道的基于InGaZnO
随着新一代的微波器件向着小型化、集成化的方向发展,YIG铁氧体材料的铁磁共振线宽、介电损耗、饱和磁化强度、居里温度等有关的综合性能需满足更高的性能要求。本文采用固相反应法制备目标YIG铁氧体材料,主要探讨低损耗YIG材料的实现途径及其应用。首先,研究缺铁量对YIG铁氧体材料物相组成、显微结构、电磁性能等方面的影响,研究表明:采用缺铁配方有助于减少铁磁共振线宽与介电损耗;过量缺铁会导致另相YFeO3
无线信息技术的发展对于通讯系统的性能提出了越来越高的要求。多功能及其集成化是目前通讯系统的发展趋势。通讯系统性能的提升对天线设计提出了更高的挑战。在此背景下,通过在同一辐射口径内集成不同性能的天线或者采用相邻天线共享部分辐射单元的方法来实现多通道或多功能子集系统融合的共口径天线对于解决通讯系统多频段、多极化、多波束以及集成化等需求有着显著的优势和广阔的应用前景。本文对共口径天线的研究动态进行了总结
中红外技术的开发与应用具有重要的战略意义,在军事、医疗与工业等领域均有广泛应用价值,而各种先进中红外材料及器件也成为该领域的研发热点。对比传统光学材料和器件,超表面可以在亚波长结构的基础上引入相位突变,通过对超表面单元的排布完成对电磁波的调控,具有结构简单、调控自由度高、兼容半导体工艺等特点,在实际的应用中具有极大的优势。通常超表面器件都只具有单一功能,并且在完成设计制备后很难进行重构,无法满足变
2017年Benalcazar在一种四方结构的晶体中连续地改变系统参数时发现拓扑角上的电荷出现了量子化现象并称之为四极矩绝缘体。四极矩绝缘体中的拓扑态局域在角上,不满足拓扑绝缘体常见的“体-边”对应关系。针对这种新型的拓扑态高阶拓扑绝缘体的概念被提出,近年来高阶拓扑绝缘体是凝聚态物理的一大研究热点。根据“体-边”对应关系,拓扑绝缘体中的拓扑态仅比样品低一个维度,而高阶拓扑绝缘体中的拓扑态比样品低了
本论文对SrO-V2O5系微波介质陶瓷进行了细致研究。为了降低烧结温度和提高陶瓷的微波介电性能,采用了钙离子掺杂、调节V元素的含量、添加硼酸钠等方法,在625℃~1000℃温度范围内分别合成了三种微波介电性能优良的陶瓷材料:Sr0.5Ca0.5V2O6、Sr2V1.90O7、Sr3(VO4)2+1wt.%Na2B4O7·10H2O。运用到X射线衍射分析、DSC-TG、SEM、TEM、拉曼光谱等分析
长时间、大强度运动可引起运动员运动性免疫抑制,导致上呼吸道感染和胃肠道感染的风险增加。作为一种安全的营养补充剂,益生菌在运动领域的应用日益增多。越来越多的研究表明,补充益生菌可提高机体免疫力,增强肠黏膜屏障功能,减少运动员上呼吸道感染和胃肠道疾病的发生率、严重程度和/或持续时间。本文综述运动员运动性免疫抑制的原因,可改善运动性免疫抑制的益生菌菌株/剂量的特异性及其在体育中应用的作用机理,并阐述其存
近年来,伴随着对可移动和轻便柔性器件的需求,人们对开发柔性器件在各个领域中的应用有着巨大的兴趣,其中在能量储存领域、生物医学领域、仿生领域等,人们已经有着较为深入的研究。柔性器件相关技术的发展和革新也势必会改变我们的生活方式。然而,目前鲜有关于柔性器件在瞬态传热方面的报道,柔性器件导热性能差的问题却一直阻碍着柔性器件进一步向轻型化、小型化、高集成化发展。本文针对上述问题,提出两种解决方案:一种是降