基于集成学习的油井产量预测模型实证分析

来源 :重庆大学 | 被引量 : 0次 | 上传用户:wuwei72323
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
油井产量预测是油田企业细化生产目标和生产决策的重要手段之一。油井工作参数蕴藏着各个参数指标之间的相关关系和产量规律,若是能有效挖掘出这些规律并加以利用,便可以在预测产量和合理控制生产这两方面,给油田企业的生产管理人员提供决策参考。针对油井日产量预测问题,本文主要利用了机器学习中的预测技术去解决问题。首先,运用多种方法对油井数据进行特征选择处理,在此基础上,分别构建多元线性回归、决策树和K近邻等单学习器模型,以及梯度提升树、随机森林和极端随机树等集成学习器模型;然后,在训练模型过程中运用交叉验证技术,得到上述每组模型的评价指标值。并基于模型得分和均方误差值,对比分析集成学习器相对单学习器的预测和性能优势;接下来,依据模型的预测精度和稳定性来选择适合油井日产量数据集的预测模型,利用最优模型计算特征重要度,得出对4个产量因变量产生关键影响的特征;最后,对预测结果进行分析并提出相关的改进措施。实验结果表明,通过对各个模型的变量特征重要性进行排序,得到影响产量的主要工作参数有:油压、油压下限、油嘴、泵径、含水和冲次等。单学习器对于油井产量预测有一定的可行性,但集成学习模型的各类度量指标均优于决策树和K近邻等模型。结合算法的特性和最终的评价指标,集成学习中的极端随机树回归模型在不同的油井产品预测上均表现最优,说明极端随机树回归能有效适用于油井日产量的分析和预测。结合油井生产的实际工作参数,将极端随机树回归模型运用到实证当中,有助于油田企业相关决策者针对油井动态生产行为进行合理管控。
其他文献
学生对于老师的课堂教学进行评分是教学评价的常用方法,被广泛运用于各个高校,是考察教学质量的重要手段之一,对于评教数据的分析能有助于发现在教学中暴露的问题,从而有针对性的采取措施,引导教学与实践朝着正确的方向发展。本文采用重庆大学2011-2014级学生考试成绩数据和2011-2017年教学评价数据,分析学生评教分数和学生成绩之间的关系。首先使用方差分析比较不同的课程类型下学生评教的差异情况,发现对
网约车行业是典型的新兴行业,它的发展是伴随着移动互联网的进步以及智能手机的普及而进行的。网约车行业在我国诞生的时间虽然短暂,但其发展势头却不容小觑,如今几乎在我国各城市都能见到其踪影,这一新兴的出行方式也深受公众欢迎,已经发展成为我国客运行业的重要力量,深深地改变了民众的出行理念和出行习惯。但是在网约车行业的发展过程中,层出不穷的网约车侵权事件成为了社会关注的热点问题,与此同时,在网约车侵权事件中
伴随着互联网的快速发展,网络招聘平台成为获取招聘信息主要的途径。本文以人工智能行业岗位为例,对该岗位在全国范围内的线上招聘信息进行研究。本文的数据选取为前程无忧网站人工智能岗位的招聘信息,对于招聘信息中的结构型数据主要进行描述性分析,从而获得该行业相关岗位的基本概况;然后对图像处理、语音识别、无人驾驶三个岗位类别招聘信息进行分析挖掘。最后对招聘数据中的不同水平之间进行关联分析,挖掘不同水平之间的内
随着科学技术的不断发展,我们已踏入了“大数据”时代的大门,各种数据信息层出不穷,我们每天都在主动或被动的不断获取着关于这个世界所带给我们的方方面面的信息,在这一信息过载甚至信息爆炸的社会中,人们真正所需要的、所感兴趣的内容和信息的海洋相比也显得九牛一毛,在这种情况下,我们如果要在浩瀚的信息中搜寻到真正想要的内容往往要借助搜索引擎带给我们的帮助(百度、Google等)。但使用搜索引擎有一个不可避免的
近年来,深度神经网络通过增加模型的深度来提高特征提取和数据拟合的能力。与浅层模型相比,它在图像处理方面表现出了很大的优势,例如图像分类,图像识别,图像分割等,为图像超分辨率重建和黑白图像着色提供了新的途径,尤其是生成式对抗网络通过生成模型和判别模型对抗来达到对生成图片最大相似度的伪装,使得图像到图像间的生成和转换到达几乎无法分辨的地步。针对图像超分辨率重建和黑白图像着色研究,如何提高图像特征的利用
随着国务院“全民健身计划纲要”和“全民健身条例”的颁布实施,全民健身活动广泛开展,我国体育事业发展速度显著提高。学校体育作为我国体育事业的主要构成部分,是我国体育运动向全民推广和普及的良好载体之一。高校作为培养及输送各类人才的摇篮,在国家体育事业开展及培养德智体美劳均衡发展人才发挥重要作用。民办高校是我国高等教育的重要构成部分,对推广和落实全民健身国家战略计划也发挥重要作用。健美操运动因其独有的项
智能化社会是大势所趋,图像分割作为计算机视觉领域的基础性工作之一,一直都是相关领域研究的重点和热点。由于神经网络强大的拟合能力,很多基于监督学习的神经网络图像分割模型被提出。但是在监督学习中需要大量的标注样本,且需要提前训练模型的缺陷,无监督神经网络分割模型逐渐受到关注。为解决以往模型未能较好地解决分割同一目标具有显著颜色差异时,难以将其分为一体的问题,本文首先大量调试SLIC算法和felzens
当前,我国农业农村现代化仍然面临着严峻形势,十九大提出的乡村振兴战略是从根本上突破这一困境的关键,战略指出:加快农业现代化步伐,促进小农户生产和现代农业发展有机衔接。2019年中央一号文件将小农户融入现代农业发展的政策进一步落实,通过“农户+公司”、“农户+合作社”的模式带动农户共同发展。大力发展农户与经营组织合作、合作组织之间联合经营是培育现代农业经营主体理论研究和实践探索的重要内容。近几年来,
进入21世纪后,个人信用贷款已成为一种极具普及性的国民消费方式。除了传统的商业银行,一些具备相应资质的互联网金融机构也进入该领域,使得我国个人征信市场朝着更加多元的方向发展。目前,个人信用评估的方法主要涉及统计学,运筹学,非参数分析法以及人工智能等领域。随着相关领域研究的深入,基于单一方法的模型已经在行业内被广泛利用。但由于单一模型提升空间有限,使用多种方法融合的组合模型成为了新的研究热点。采用合
排水管道是重要的市政设施,定期对排水管道开展养护工作是保证城市排水、防涝的重要举措。然而我国排水管道工作由于各种条件限制,存在一定的问题,利用管道机器人介入到排水管道养护工作中,是必然的发展趋势。本文利用层次分析法(AHP)辅助构建功能分析系统技术(FAST)模型,提高了FAST图表的绘制效率,建立FAST-AHP组合法。希望通过该方法指导排水管道养护机器人的功能构建,解决以下问题:1、产品功能开