【摘 要】
:
伪随机序列由于其具有平衡性、长周期、低相关性、较大的线性复杂度等良好的随机特性,在码分多址(CDMA)通信系统、流密码系统、雷达、编码等领域有广泛应用.利用分圆理论构造
论文部分内容阅读
伪随机序列由于其具有平衡性、长周期、低相关性、较大的线性复杂度等良好的随机特性,在码分多址(CDMA)通信系统、流密码系统、雷达、编码等领域有广泛应用.利用分圆理论构造的伪随机序列,称为分圆序列.由于分圆序列易于分析确定序列的随机特性,因此构造出一些有良好随机特性的分圆序列具有重要的意义.近年来许多学者致力于构造出一些具有低自相关值和高线性复杂度的分圆序列.本文首先构造了一类周期为N的三元三阶分圆序列,这里N≡1(mod 3)为素数且存在一整数α,使得N=α2+12.该序列的自相关值为三值且线性复杂度为N-1.其次,对于奇素数N≡1(mod r),r为正整数.基于分圆理论及其相关性质构造了一类周期为N的几乎r元理想自相关序列,通过修改零点的值,进而得到了一类r元序列,并且确定了其自相关值的分布,计算了周期自相关函数Meritt因子及线性复杂度.此类序列当r≥3时,周期自相关函数Merit因子为(?),线性复杂度可达到N-1.所构造的新序列包含了一些已知的序列.
其他文献
近年来磁流体方程的数学问题在国际上越来越引起数学界的重视,许多数学家都致力于研究MHD方程理论和数值解.基于经典的李群方法,我们得到了无穷小生成元并通过一个已知解来构
现代物理学广泛关注碰撞问题,碰撞反应分为三类,弹性碰撞、非弹性碰撞、反应。本论文研究的是激光场辅助下的(e,2e)反应问题,选取氢原子为(e,2e)反应中的靶粒子,即为研究激光
随着信息化建设的加强,当今社会越来越多的企事业单位建立了属于自己的数据中心。同时,数据中心业务不断拓展,服务器数量日益递增,运维人员在数据中心的运维管理上也涌现出许
近年来,分数阶微分方程的研究成为新热点,而分数阶非线性Schr?dinger方程就是一个重要的研究对象.寻找分数阶非线性Schr?dinger方程的孤立波解、群不变解和幂级数解,对于研究
近年来,在光纤通信系统中常利用光孤子传输信息,在新一代的通信技术中发挥着巨大作用,因为光孤子传输信息具有远距离,大容量传输的优势.非线性薛定谔方程(Schr?dinger)可以用
为了更加深入的了解微观粒子的运动情况,量子散射作为一门独立的学科进行更系统更深入的研究,其中作为最为基础的(e,2e)反应被广泛应用于各式各类的实验和研究中,激光场辅助
随着科学技术的不断进步和产品功能的多样化进展,人们对系统可靠性有了更深入的理解。产品的组成元件在失效过程中表现出的特征不再是简单的两状态而是多状态,多状态系统的可
设c(p,q)是一个定义在R2上仅与p,q有关的函数,本文的主要目的就是要找到一个p,q关系式使下述不等式对于任意的x∈(0,π/2)恒成立:并由此得到一些关于三角函数的新的Cusa-Yang-
由V. V. Sergeichuk引入的线性矩阵问题,是矩阵问题的一种优美的表达方式.一般来讲,矩阵问题是研究在一定相似变换下的某些矩阵的集合的相似问题.而其中的重要问题之一便是发
本文主要考虑具有周期边值问题的二阶非线性微分方程系统的正周期解的存在性,所考虑系统中的非线性部分在一个方程中是次线性,在另一个方程中是超线性的.通过构建C[0,1]中两