【摘 要】
:
主要研究了粘性Cahn-Hilliard方程吸引子的存在性问题.探讨粘性Cahn-Hilliard方程在自治系统解的长时间性态,证明了粘性Cahn-Hilliard方程存在全局吸引子.同时考虑了粘性Cahn
论文部分内容阅读
主要研究了粘性Cahn-Hilliard方程吸引子的存在性问题.探讨粘性Cahn-Hilliard方程在自治系统解的长时间性态,证明了粘性Cahn-Hilliard方程存在全局吸引子.同时考虑了粘性Cahn-Hilliard方程在非自治系统的情形,分别证明了Cahn-Hilliard方程和粘性Cahn-Hilliard方程存在一致吸引子.本文从以下四方面展开研究:第一部分中运用新的验证紧性的方法,证明粘性Cahn-Hilliard方程在空间)(2L?存在全局吸引子,对全局吸引子的维数进行估计,得到了其维数是有限维的.第二部分中研究了粘性Cahn-Hilliard方程在空间1H和2H的全局吸引子.首先分别得到1H、2H空间中存在有界吸收集,由此得到1H空间存在全局吸引子,然后应用验证紧性方法得到2H空间存在全局吸引子.第三部分中研究了非自治Cahn-Hilliard方程长时间的动力学行为,证明了该方程存在一致吸引子.借助含有两个参数的过程族来描述一致吸引子,在延拓空间中构建一致吸引子的存在的方法,利用能量不等式的技巧,证明了Cahn-Hilliard方程在)(2L?空间中存在一致吸引子.第四部分中研究了非自治粘性Cahn-Hilliard方程一致吸引子的存在性.证明了粘性Cahn-Hilliard方程在12HL?中存在一致吸引子.
其他文献
汽车碰撞过程是一个非常短暂的过程,在这个瞬间过程中,汽车碰撞接触面会呈现出近似非牛顿流体的性质,本文用Cauchy方程和P-T/T方程来描述碰撞过程中汽车表面应力和速度的变化
经典的Gauss-Markov模型中仅顾及了观测向量y的随机噪声,忽略或假定系数矩阵A不受随机噪声的影响,采用最小二乘方法(LS:least squares)便可求得模型参数解。变量误差模型(EIV
超几何函数是特殊函数中极为重要的一部分,它不仅在组合数学、数论和数理方程等数学领域中起着重要的作用,而且在物理学、控制工程、通信工程等其它学科中有着广泛的应用.201
微分分次(简称DG)down-up代数是一个忘记微分后为分次down-up代数的上链DG代数.设(A,(?)A)是一个DG down-up代数,使得其忘记微分后得到的分次代数A#是由x,y生成,并且满足如下
蒸散即指土壤表面水分蒸发和植被水分蒸腾同时发生的共同作用现象,是从陆表传输到大气中的水分,连接了地表水分循环,二氧化碳循环和能量交换,是水圈、大气圈和生物圈水分和能
林区的数字高程模型(Digital Elevation Model,DEM)在生态学、地学、水文等多个重要领域都具有广泛的应用。机载激光雷达技术(Light Detection and Ranging,LiDAR)受光照、温度、季节等因素影响较小,能够快速获取高精度、高分辨率的真实地面三维坐标数据,成为获取大面积森林地区高精度DEM的重要手段。点云滤波是机载LiDAR数据所有应用的前提和关键步骤,
光学与极化SAR影像能够信息互补,提高城市地物信息提取精度,但是,由于成像原理不同,二者具有几何和辐射特性差异,尤其随着空间分辨率的提高,地物提取复杂度和难度增加,且光学
近些年来,许多学者致力于研究全局最优化问题的算法,并取得一定的进展,本文重点研究基于α-致密曲线的全局优化算法。算法在第一阶段通过α-致密曲线将多变量全局优化问题转
这篇文章重点探究了常利率下双险种风险模型,且其保单总次数服从负二项过程,同时理赔的总次数服从Poisson过程,那么便是常利息下复合负二项双险种风险模型,对其稳定经营的必
动力学建模与求解是多体系统动力学仿真的主要研究内容。微分-代数方程是具有普遍性的传统多体系统动力学模型,数值积分方法的稳定性、高效性以及高精度是诸多动力学和应用数