几个各向异性矩形有限元的超收敛分析

来源 :郑州大学 | 被引量 : 0次 | 上传用户:fashenqq
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
该文先给出各向异性剖分下的逆不等式.利用双线性元、类Wilson元、改进的五节点矩形元的构造特点,如这类非协调元的协调与非协调部分之间的正交性,针对二阶椭圆问题,得到了在各向异性情况下各有限元解的超逼近性质和超收敛性质.并在不同形式各向异性网格下给出相应数值算例.
其他文献
该文提出并分析一种解决等式约束最优化问题的修改的罚函数法.与经典罚函数相比较,修改的罚函数法所用的罚函数是连续可微的,消除了L1罚函数的不可微性.在此基础上,文章在修
本文在两个相对弱化的假设条件H1*和H2*下,系统地研究了两种合理性指标、两种正规性指标以及强完全合理性指标之间的关系.  首先,我们对普通和模糊情况下选择函数的合理性、
本文以电子元件组成的系统为模型,在现有可靠性的研究成果的基础上,对以下几个典型的系统可靠性进行了分析和研究: (1)对由几个相互独立的串联系统,从系统的任意状态(k1,k2…,kn)出发,
本文分别探讨了两种类型的内生经济增长模型——确定性增长模型和随机性增长模型。首先,把休闲引入Uzawa-Lucas模型,利用动态最优化方法,在休闲外生的情况下,确定了一个三维
该文分四章:第一章为引言;第二章研究一类非线性高阶波动方程的初边值问题的局部广义解的存在性和唯一性;第三章研究第二章所述问题的解的爆破;第四章研究三维广义Ginzburg-L
该文研究了特征为0的域上的代数的局部幂零导子,首先在第一部分给出了一般代数上的线性变换s及c的性质:(s)+(c)=I(这里的I是恒等映射)等,这也就刻画了代数上的局部幂零导子的
函数空间L(R)中的小波分析已取得了丰硕成果.2001年,Laugesen给出了其中小波完备性的充分必要条件.该文研究了e(Z)中正交小波的完备性,给出一些简单的判别方法,它们适合于判
自Adleman博士首次提出DNA计算理论并成功解决哈密顿路径问题以来,许多科学家都致力于用DNA计算来解决图论问题并建立模型。他们的最终目的是研制出以DNA计算为基础的、具有
种群动力学是生物数学的一个重要研究分支.种群动力学的研究主要是基于某一生态系统中各物种进化发展的特性及物种间的生态关系,建立能够反映这一生态系统动力学特性的数学模