关于有限群上的整群环ZG的相对K<,1>群

来源 :西北工业大学 | 被引量 : 0次 | 上传用户:zhangchenglin427
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
整群环ZG是一类非常重要的环,它的K-群是代数K-理论中十分重要且引人入胜的研究专题之一.在研究ZG的结构及其K-群时,人们通常将它与所谓的QG的极大Z-序Γ联系起来.在本文的第一章对人们关于Γ结构的研究结果给出了简略的叙述,但这些结果都没有具体给出Γ中元的形式.在第二章和第三章中,本文对有限循环群和有限基本p-群讨论了它们的整群环ZG在QG中的极大Z-序Γ的具体形式.在第四章中研究了Kahler形式Ω<,r/ZG>,并利用Γ的具体形式证明了当n=1时典范同态ε<,n>:K<,n>(ZG,|G|Γ)→K<,n>(Γ,|G|Γ)是同构映射.
其他文献
同调代数作为代数学的一个分支,已不仅仅是一种理论,而成为环论研究的有力工具.本文运用投射模的分解理论,通过计算同调不变量Tor(Z,Z)来研究代数K-理论中非常重要的切除问题
传统图形绘制技术均是面向几何模型的,因而绘制过程涉及到复杂的消隐和光亮度计算过程。但对于高度复杂的场景,现有的计算机硬件可能仍无法实时绘制简化后的场景几何,因而我们面
本文考虑一类三维和四维常微自治系统的周期轨道与不变环面的分支问题.众所周知,关于平面自治系统的极限环的分支的研究已较为成熟,人们已建立起研究其分支的基本理论与方法,
定性理论在常微分方程的研究中是十分重要的,它是由常微分方程来直接研究和判断解的性质的理论。定性理论的思想已经逐渐渗透到其他数学分支。对二维系统特别是平面系统,定性理
信赖域方法是非线性优化中一类重要的数值计算方法,它具有良好的收敛性和稳定性,因此在许多领域都有广泛的应用.本文主要研究约束非线性优化问题的信赖域算法,全文分为三章.
贝叶斯网络是非常重要的一类概率图模型,它用直观的图结构描述随机变量之间的条件独立关系,在不确定性知识的表达和推理方面具有独特的优势,如今已经成功地应用于机器学习、
本论文在崔锦泰和施咸亮所得结果基础上给出L2(R)的子空间L2E(R)中有限个函数ΨL具有不同伸缩因子和不同平移因子的标准正交小波的特征刻划.主要结果为: 定理A.假设Ψ=ΨL=
VaR方法是一种度量金融风险的新方法,具有测度全面,概念简单,适合监管等优点。基于核估计的VaR历史模拟法使VaR估计的历史模拟可以建立在连续可微的组合回报基础上,不但具有