多相介质分布电容/微波层析成像仿真与实验研究

来源 :中国科学院大学(中国科学院工程热物理研究所) | 被引量 : 0次 | 上传用户:jakynum1
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
多相介质分布广泛存在于工业生产过程,例如原油运输过程中的油/气/水多相流,制药行业中流化床内颗粒干燥过程中的含水气-固分布等。上述多相流动状态的监测对过程安全具有重要影响,如石油/天然气运输管道内水的存在会给多相流的运输带来巨大的风险;流化床颗粒干燥过程中,维持稳定的流动状态是保证过程高效安全的首要条件,当高含水率颗粒流化停滞时,往往会发生颗粒的凝聚,伴随着传热传质水平的下降,严重影响产品质量,甚至造成物料报废。上述过程很难通过直接观测获得流态信息,系统属于“黑匣子”状态。因此,对多相介质分布进行实时在线监测具有重要的理论意义和工程应用价值。目前,多相介质分布测量技术主要包括单点测量和过程层析成像测量。单点测量技术主要是通过压力探头、光纤探头等对特定位置的流动状况进行监控,属于接触式测量,对流场产生干扰,所提供的信息量有限。过程层析成像技术属于非接触式测量,能够实现多相介质分布过程的在线监测及流型识别,如电容层析成像技术(ECT)已被广泛用于实验规模和工业规模的成像监测。对于复杂多相体系,依靠单一成像手段往往难以满足测量需求,如在高含水率多相介质分布条件下,ECT技术难以发挥作用。因此,需采用可满足高含水率介质测量的层析成像技术,如微波层析成像(MWT)。综合运用ECT和MWT技术进行多相介质分布动态测试为相关工业过程提供指导,具有重要的研究价值。结合仿真模拟和数值计算,本文利用了非接触式电容/微波(ECT/MWT)层析成像技术,对典型的多相介质分布进行了静态和动态测试研究。对气-液/液-液分布和不同含水率的气-固分布的静态分布进行了仿真模拟和实验研究;利用了原始图像更新敏感场的方法进行了 ECT图像和MWT图像的优化研究;基于CFD数值计算和双模态电学层析成像技术,对流化床内颗粒流化和高含水率颗粒的气-固分布分别进行了数值计算和干燥过程监测。主要的研究内容包括:(1)基于本文设计的8电极圆形ECT电极传感器和16电极圆形MWT电极传感器,研究了油-水/油-气静态分布,得到了仿真模拟和实验结果。研究结果表明:ECT系统适合测试油-气两相分布,但不适合测试含水相液-液分布,即使在超量程的标定背景下同样无法完成正常测试,仿真模拟结果与ECT实验结果类似;MWT系统不适合测试油-气两相分布,但适合测试油-水两相分布,特别在超量程的标定背景下可获得更明显的成像结果。(2)基于本文设计的12电极圆形/方形ECT电极传感器和16圆形/方形电极圆形MWT电极传感器,对高含水率颗粒进行了 ECT/MWT成像研究。结果表明:ECT测试不同湿度的颗粒时,高标定介质的含水率和被测介质的含水率均存在上限值,且不同流型的上限值不完全一致。当高标定介质的含水率或被测介质的含水率过高时,ECT系统无法工作,图像完全变形。仿真模拟的结果与ECT实验结果类似。MWT测试不同含水率颗粒时,高标定介质的含水率和被测介质的含水率不受限制。固定标定背景下,含水率越高的介质MWT成像区域越明显。过高的含水率颗粒会导致流型无法正常识别,比如“环-核”分布。对于0-30%的含水率颗粒,越低含水率颗粒作为高标定介质时ECT图像质量越高,越高含水率颗粒作为高标介质时MWT流型识别能力越强。(3)利用敏感场更新的方法对ECT和MWT进行了图像优化研究,分析了不同电容归一化方式对成像结果的影响。研究结果表明:利用图像误差最小的初始ECT图像更新敏感场后,重建的ECT图像的最佳归一化方式改变;而且,利用图像误差最大的初始ECT图像更新敏感场后,重建的ECT图像的最佳归一化方式改变,但可获得更优的ECT图像;利用MWT图像更新敏感场进行ECT图像重构后,重构的ECT图像误差明显小于MWT图像误差,可实现MWT图像优化。(4)基于ECT和MWT对高含水率颗粒干燥过程进行了实验研究,分析了不同入口流化速度和流化温度对干燥过程的影响。实验结果表明,可互补地利用ECT系统和MWT系统监测复杂高含水率颗粒气-固动态过程。ECT系统在进行高含水率颗粒的实验测量时,测量初期特别是颗粒含水率高于20%以上时ECT系统无法完成高含水率的正常成像。但随着干燥颗粒的湿度降低,ECT图像趋于正常,可实现流型识别。ECT系统用于判断流型,MWT系统用于判断颗粒含水率变化。电学信息结合在线的压力、湿度、温度等单点测量的信息可全面地反应干燥过程中颗粒流化的状态。(5)采用CFD数值计算方法,对流化床内干燥颗粒开展了气-固流化模拟研究,考察了不同物料高度和不同流化风速对气-固多相流流态化的影响。利用颗粒的浓度分布和速度分布对流化床内不同高度上进行流态研究。结果表明,CFD数值计算结果与ECT冷态实验结果一致,颗粒在底部为锥形的流化床内主要呈现“环-核”分布;选择合适的流化风速和物料高度,有利于提高ECT成像的准确性。ECT对流化床内中心区域的空间分辨率低,该区域颗粒流化不易被捕捉,CFD数值计算结果可为ECT“软场效应”提供补充信息。通过本文研究表明,电容层析成像技术和微波成像技术可互补性地应用于工业生产中进行多相流监测,例如油-水/油-气两相分布流型识别和高含水颗粒干燥过程监测。敏感场更新方法可优化多相介质分布的ECT图像和MWT图像。MWT技术在高含水率介质测量方面能弥补ECT系统的不足。数值计算结果可指导流化床内匹配合适的物料量和配风量,并可补充颗粒流化的浓度信息和速度信息。
其他文献
本文通过对IODP346航次于冲绳海槽北部所钻取的U1428和U1429站两个长钻孔岩芯进行了沉积物粒度分析、沉积矿物(碎屑矿物、单矿物以及粘土矿物)分析及沉积物地球化学(同位素和常微量元素)分析,研究了中更新世以来冲绳海槽北部沉积物输入演化历史及其控制机制,重建了东亚东部边缘海尤其是浙闽隆起带的演化,建立了黑潮强度演化指标,并且探讨了黑潮在全球气候变化中所扮演的角色。研究结果表明,末次冰期以来冲
目的分析国际和国内艾滋病服药依从性领域的研究热点和前沿。方法以Web of Science(WoS)数据库和中国知网(CNKI)数据库为文献来源,运用CiteSpace可视化工具分析发文量、国别、机构与研究核心和前沿。结果共纳入WoS文献5 383篇、CNKI文献1 098篇。国内研究较国际起步晚,但二者呈现稳步增长的趋势,美国发文量位居首位。研究热点集中在影响因素和干预手段,国际相对国内有更多的
学位
本翻译报告的翻译内容选自教育研究报告Assessing Underserved Students’Engagement in High-Impact Practices(《受教育不足学生参与高影响力教育实践的评估报告》)中的第二部分。本章节通过开发探究式的模型,探索评估受教育不足学生参与高影响力实践的定性方法。该文本属于信息类文本,因此在翻译过程中,笔者主要选取了归化策略和交际翻译理论对译文进行指
1.南极普里兹湾海域的磷虾和纽鳃樽在空间分布上磷虾密度较高的站位几乎全部位于64–67oS之间。各航次中站位之间磷虾密度变异较大,大多数年份磷虾密度最高和最低值之间相差两个数量级。除2007/2008年未采集到南极磷虾外,从1999/2000到2009/2010年高速采集器和IKMT均采集到幼体后期磷虾。南极磷虾密度年际变化明显,高速采集器采集的南极磷虾平均丰度和生物量最大值为1442.3ind/
多细胞趋磁原核生物(Multicellular magnetotactic prokaryotes,MMPs),是一类由10100个含有磁小体的细胞聚集而成的具有特殊形态的趋磁微生物,是研究生命起源与进化、细胞分化和生物矿化的模式生物。目前仅报道了两种形态的MMPs,分别为桑葚型(多种)和菠萝型(仅一种)。本研究利用生态调查手段,分别在荣成月湖、晋卿岛和法国马赛的潮间带沉积物中,发现了3种菠萝型M
燃气轮机气路故障诊断可以提供早期故障预警,合理安排维修计划,以保障燃气轮机安全高效运行。三轴式燃气轮机结构复杂,非线性特性显著,对其进行气路故障诊断极具挑战性。目前,燃气轮机气路故障诊断方法的识别准确率受限,同时对于气路与传感器耦合故障诊断还没有行之有效的技术途径。本文针对三轴式燃气轮机,重点开展气路故障识别、气路故障程度评估、气路与传感器耦合故障诊断等研究工作,提升气路故障诊断的准确性,稳定性与
全球气候变化的形势日益严峻,二氧化碳减排的任务迫在眉睫。发展可再生能源代替化石能源燃烧,是降低二氧化碳排放的有效途径。近十年来,太阳能、风能等可再生能源技术发展迅速,但是可再生能源间歇、分散的自身特点导致其难以在短时间内完全取代化石能源。太阳能热化学技术可以将太阳能用于制备氢气,氢能是一种零碳排放的高密度能量载体,发展高效、清洁、可持续的太阳能热化学制氢技术,对于缓解全球气候变化、加速能源结构转型
在能源与环境问题日益严重的今天,愈发的强调能源与环境的协同发展。氢能的高效制备与利用是当前国际发展与国家发展的重要前沿方向,全球的主要国家都高度重视氢能的发展,甚至将其上升到国家战略的高度。在国家的整体能源系统中,氢能也成为了未来国家能源战略与能源规划中重点研究的内容。化石燃料在未来的一段时间内仍然是能源体系中的重要组成部分,因此实现以天然气为主的化石燃料向氢能的高效转化则对目前发展清洁能源体系具
近年来国际上针对燃气轮机燃烧室提出的微混燃烧(Micro-mixing Combustion,MMC)技术成为研究热点,其是一种通过缩小燃料和空气流动混合尺度,达到强化出口均匀性实现低NOx燃烧的技术。常规天然气贫预混燃烧室主要通过旋流结构促进燃空混合,以及在喷嘴出口逆压梯度诱导高温烟气回流实现稳焰,而微混燃烧器内燃料和空气多以交叉射流或同轴射流的形式混合,一般不具备空气或燃料旋流结构,因此微混燃