论文部分内容阅读
光纤通信的基础是光电子技术,其大量的光-电-光转换在一方面利用了成熟而廉价的集成电路技术,另一方面却也受到电子瓶颈的影响而限制了其通信容量的最大化。与微电子技术的发展一样,光电子技术或光子技术的发展目标仍然是集成,这类集成现在一般通称为光集成。光集成有两个方向,功能集成和个数集成,集成方式有光光集成和光电集成,而集成方法有单片集成和混合集成。硅材料无疑在集成光学里扮演了一个重要的角色,首先它的透明窗口恰好就在光通信频段;其次,其强大、廉价而成熟的微细加工工艺是光集成必不可少的;第三,硅的等离子体色散效应使其具有了实现调制器、光开关的可能性;第四,绝缘体上的硅(SOI)材料制备技术的成熟拓宽了硅材料在集成光学中的应用范围,使光子器件集成、光子晶体器件集成成为可能。 本论文工作主要集中在SOI基光器件和光电器件的设计和工艺方面。有限元方法是波导光学模式求解的重要方法之一,罚项方法能消除传统全矢量节点有限元解中始终存在的伪模,作者在该方法基础之上,对罚因子进行了改进,提出了新的罚项,并对该方法的理论背景进行了阐述。采用该方法提高了模式的求解效率,得到了更好的本征模场和本征值,但是伪模仍然存在。棱边有限元方法是目前解决伪模问题的最好方法,由于SOI波导很高的折射率差,必须采用全矢量方法才能准确的设计单模波导。本文在Matlab上实现了全矢量棱边有限元方法,边界层用完全匹配层做为吸收层,对SOI脊形波导的模式进行求解,并与有效折射率方法所得的结果进行了比较分析。同时采用该方法计算了SOI基硅线的模式特征与氧化物埋层厚度的关系,得到了低泄漏损耗必需的氧化物埋层厚度为1μm的结论。 采用标量节点有限元方法分析了平面TE模和TM模下的SOI光子晶体Y分支和三分支结构,计算了光在其中的传播模式,并获得了其在100 THz—300THz范围内的透射功率谱;计算了SOI微环谐振腔结构的响应谱,以及反射辅助型的微环谐振腔的响应函数,采用符号计算工具分析了其各端口的最优响应条件。 设计并实现了SOI基可调光衰减器。应用棱边元方法设计了其脊形波导的导波结构,电极特性的设计分别采用了载流子运动的扩散模型和漂移-扩散模型。并用有限元方法实现了这两种模型的数值求解,优化并获得了载流子在波导截面的分布。通过数值模拟优化电极距离、掺杂浓度等参数,设计并流片实现了衰减器芯片。用Protel设计了镍金材质的PCB测试板,并完成了经过CMP抛光后的衰减器芯片与PCB板的搭线封装。完成了VOA中p-i-n结的I—V特性测试,以及VOA的电流—衰减特性和功率—衰减特性测试。VOA的衰减特性比较明显,首次流片和无冷却的情况下,动态衰减范围达到了14dB。将p-i-n结的I—V特