【摘 要】
:
纳米材料由于具有尺度上的独特优势,被广泛应用于医药、催化、传感等各个领域。本文利用不同类型的功能纳米材料构建了两种不同类型的荧光传感器,用于特定目标物的检测,探索了纳米材料的参与的荧光生物传感器传感的设计、构建和应用。首先,以具有发光功能的纳米金属材料——银纳米簇作为传感器的信号发生器,利用银纳米簇对DNA模板序列和结构的依赖和特异性适配体,建立灵敏的三磷酸腺苷(ATP)传感器。ATP作为人体内重
论文部分内容阅读
纳米材料由于具有尺度上的独特优势,被广泛应用于医药、催化、传感等各个领域。本文利用不同类型的功能纳米材料构建了两种不同类型的荧光传感器,用于特定目标物的检测,探索了纳米材料的参与的荧光生物传感器传感的设计、构建和应用。首先,以具有发光功能的纳米金属材料——银纳米簇作为传感器的信号发生器,利用银纳米簇对DNA模板序列和结构的依赖和特异性适配体,建立灵敏的三磷酸腺苷(ATP)传感器。ATP作为人体内重要的生理指标,其水平检测对各类生理疾病的前期诊断具有重要意义。本工作最终构建了一种基于多色银纳米簇(DNA-Ag NCs)的比率型荧光生物传感器。该传感系统包含两个核心成分:包含ATP适配体的、锚定序列和用于合成绿色银纳米簇的特殊模板序列的发卡形DNA以及一条与锚定序列不完全互补的单链DNA(ss DNA)。目标物ATP加入后,ATP/适配体复合物的形成可以打开发卡结构并释放锚定序列,锚定序列与ss DNA杂交,该过程伴随着绿色荧光的“关闭”和红色荧光的“开启”,通过测量两种信号的荧光强度比成功建立了比率型生物传感器,检测限(LOD)低至0.38μM。同时,该比值生物传感器在实际样品分析中显示出稳定的回收率,并且具有良好的抗干扰能力,显示了其在实际应用中的潜力。其次,以多孔纳米非金属材料——介孔纳米硅球作为传感器的固体基质,利用介孔硅表面氨基和β-二酮结构对稀土发光离子Eu3+的双重螯合作用,建立了灵敏的左氧氟沙星(LVFX)传感器。左氧氟沙星(LVFX)是一种广泛使用的氟喹诺酮类抗生素,过量使用可能会进入生态循环,对环境造成破坏。在此,我们建立了一种由Eu(III)功能化的氨基化介孔二氧化硅纳米颗粒(Am-MSNs@Eu3+)用于LVFX荧光传感检测,该传感器通过将Eu3+作为信号源,和氨基化的MSNs组装形成一个复合系统,通过荧光共振能量传递过程,LVFX中β-二酮二齿配体的可以有效传递能量,敏化Eu3+@Am-MSNs的发光,从而实现对LVFX的识别。该体系可以快速定性(50秒内)和定量(ppb水平)检测LVFX在水溶液和牛奶上清液中的含量。这是首次尝试使用镧系离子功能化的MSNs构建耦合多个机制检测LVFX的荧光传感器。
其他文献
现代战争正向着无人化、智能化的方向发展,火箭炮储运发箱的自动化吊装技术是决定战场补给效率的一个关键因素。利用液压重载机械臂实现对于火箭炮储运发箱的快速高精度吊装的关键在于针对液压机械臂的各种模型不确定性,设计一个适合其实际使用的控制策略。本文针对七自由度液压重载机械臂的控制问题,在以下几个方面开展了研究:(1)介绍了七自由度液压重载机械臂构型,并且详细分析了各关节的受力情况,合理处理各关节动力非线
2020年以来,伴随着席卷全球的新冠肺炎疫情,世界格局加速演变,国际军事形势更加复杂动荡。近日,日美又在钓鱼岛问题上兴风作浪,挑战中国的底线。因此,我国对领海动态的实时掌握有着迫切的需求。遥感图像提供了一种较好的监测方式,因为即使是“隐身”类舰船,舰船尾迹的存在也是不可避免的,且通过舰船尾迹能够反演出舰船的大小、航向等信息。因此,对舰船尾迹的搜索捕获就显得尤为重要。故而本文主要针对遥感图像下海面舰
拓扑优化是一种依据所给载荷和边界条件、约束条件和材料参数,在给定的区域内对结构分布进行优化的高效算法。拓扑优化的主要研究包括连续体拓扑优化和几何元素拓扑优化。连续体拓扑优化是把设计区域内的材料离散成有限个具有固定特征的一定数量单元(壳单元或者体单元),借助单元密度的连续变化完成优化设计,变密度法拓扑优化是目前较为通用的拓扑优化方法;几何元素拓扑优化是在设计区域内建立一个由有限数量具有固定特征的单元
高光谱图像技术广泛应用于农业、环境监测、地质探测等领域。然而,高光谱图像在获取中,受多种因素影响,会含有不同类型的噪声,这对后续的高光谱应用,如分类、识别和目标检测等将产生较大影响。因而,高光谱图像去噪是高光谱图像处理中的研究重点和热点问题之一。高光谱图像同时含有地物的空间和谱维信息,具有较大的数据量和信息量,且数据之间具有较强的空谱相关性。因此,本文利用低秩张量对高光谱图像进行建模。在张量变换域
与单幅图像相比,图像集可以更灵活和准确地描述不同类别数据之间的差异,在复杂情况下具有更好的容错性,因此基于图像集的分类方法引起了广泛关注。在图像集分类方法中,稀疏编码和协同表示因其鲁棒性和有效性而备受关注。然而,现有的方法大多集中在欧氏空间的协同表示上。如何从几何感知的角度来处理这一问题,解释非线性流形上的协同表示机制,仍然是一个研究空白。本文着手于Grassmann流形,做了以下研究工作:(1)
随着现代制造业的飞速发展,高强度板的应用领域越来越广泛,辊式矫平机可用于高强度板的矫平,使其具有更好的平直度、更小的内应力,在冶金行业有着不可或缺的地位。针对目前高强板辊式矫平机矫平机理不明确、矫平效率不高、矫平精度低、自动化程度难以满足生产需求等问题,本文对其关键技术进行分析与研究。主要内容包括:(1)在分析矫平过程中的工艺流程以及矫平方案的基础上,考虑板材矫平过程中的硬化现象以及材料的应力、应
高速经编机是经编纺织业中的高端制造设备,目前国内高速经编机普遍存在生产织品有瑕疵、机床运动不稳定、装配成本较高等问题,这些问题都与其主要部件——成圈部件和连杆架部件的装配质量密切相关。首先,根据高速经编机的实际装配过程构建影响装配质量的鱼骨图,从中提取与连杆架部件相关的影响因素并验证其独立性。之后采用不同的人工智能综合算法,根据连杆架部件的影响因素预测针床错针长度,选择预测精度较高的人工智能算法构
机械制造行业常将长径比大于5的孔称为“深孔”,由于深孔加工刀具大多细长,刚性较差,而同时深孔加工过程中刀具受力较浅孔加工更为复杂,因此会发生严重的轴线偏斜,极大制约着深孔直线精度。本文针对某乘用车变速器轴齿件上一直径27.1mm,长度443mm,长径比16.3的深长孔加工,结合现有轴线纠偏理论,对中小直径深孔轴线偏斜的控制方案进行了研究。首先分析了引起深孔轴线偏斜的因素及其作用机理,建立了相应的钻
钠离子电池影响其实际应用的最大障碍在于,传统锂离子电池中的石墨负极在钠离子电池中性能表现不佳。而醚类钠离子电解液使石墨负极得以实现,它利用共嵌入的模式使得石墨负极在钠离子电池中得以应用。但是醚类电解液在钠离子正极中表现了较低的氧化电位与循环稳定性,电解液在正极高电位容易氧化分解,增加电解液的不可逆反应。为了解决这个问题,本文利用添加硝酸钠提升电解液氧化电位,此方法较为简单且成本低廉,这对钠离子全电
由于汽车工业的飞速发展和对节能减排的需求,汽车铝合金制件以优越的性能正在逐步的取代钢铁制件。以铝合金的半固态流变挤压铸造工艺代替其他制造工艺,可以在做到效率与成本有效平衡的同时,大幅度地提升制件产品的质量。但是,该工艺在国内还处于实验研究到实际生产的过渡阶段,尚不能达到高性能零件的大规模生产。本文将轮毂作为典型汽车结构件,以Al Si7Mg铝合金为研究对象,结合数值模拟和试验验证对其流变挤压铸造成