基于高频动态响应的轻质点阵夹芯结构损伤识别研究

来源 :江苏大学 | 被引量 : 0次 | 上传用户:liufendou
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
点阵夹芯结构由上下两个薄面板以及具有高孔隙率的夹芯子组成,点阵夹芯结构以其高比强度和刚度,质量轻,可设计等优良的力学性能,作为具有多功能特性的新型材料被广泛应用于交通运输工具及工程建筑中。由于夹芯子设计的复杂性,点阵夹芯结构在制备以及服役过程中会发生面板脱焊或单胞缺损等损伤问题,损伤的存在会使得结构的刚度急剧下降,在工程应用中会造成严重事故发生。因此,准确及时检测点阵夹芯结构在服役及制备过程中存在的损伤问题,以及建立结构健康监测系统是亟需解决的关键问题。针对点阵夹芯结构的脱焊损伤问题,本文提出了基于高频动态响应的损伤检测方法。依据局部共振的概念,通过数值仿真得出局部损伤区域的固有频率。以该固有频率为中心频率,择取一定范围的宽频带,测量结构在高频激励下的局部共振响应特性。本文采用频响函数法得到宽频带内多个模态振型;采用结构工作变形(ODS,Operational Deflection Shapes)测试方法获取多个特定频率激励下的结构响应;采用声场激励获得结构宽频振动声压级响应。分别对这三种测试方法得到的响应数据进行分析,利用本文提出的损伤指标,得到点阵夹芯结构基于模态振型的损伤成像和基于结构ODS的损伤成像。本文在数值模拟的基础上对含有单点脱焊损伤的点阵夹芯结构进行试验研究,试验中分别采用压电片(PZT)和非接触式扬声器两种方式进行激励。搭建不同的实验平台,分别是搭建PZT-非接触式激光测振仪(SLDV,Scanning Laser Doppler Vibrometry)混合系统点阵夹芯结构损伤检测实验平台,以及扬声器-SLDV非接触式损伤检测实验平台。实验中激励信号均采用四峰波周期性简谐信号,根据测试方法的不同,设置激励频率步长,通过非接触式多普勒激光测振仪对点阵夹芯结构含有损伤的单侧面板检测区域进行扫描,拾取到面板表面的振动响应信号。通过分析结构的振动模态特性,进而判定损伤位置。基于高频振动响应的损伤检测方法不需要结构材料、尺寸等信息,尤其是非接触式损伤检测,只需测得结构宽频带内的振动响应,结合本文提出的损伤成像方法,便可实现损伤定位。研究结果证明,本文提出的点阵结构健康监测方案可非常方便的应用于实际复杂结构的损伤检测中。
其他文献
腐乳是中国传统的发酵豆制品之一,风味独特、营养丰富,是人们日常生活中一种重要的调味和佐餐食品。风味作为影响腐乳品质的重要指标之一,实现其科学表征具有重要的意义。目前,腐乳风味表征方法主要包括传统理化检测、仪器检测及人工感官品评。其中,理化和仪器检测存在耗时较长、操作繁琐的缺点;而人工感官品评中品评员容易产生感觉疲劳,不方便长时间工作。为弥补传统检测方法的不足,实现腐乳风味的科学快速表征,本研究采用
学位
H13钢作为一种被广泛使用的热作模具钢,具有淬透性高、韧性好、耐磨性强以及疲劳性能好等一系列优良的性能。然而,在高温、高载的工况下,H13钢往往会因为热磨损而早期失效。与传统合金相比,高熵合金由于具有迟滞扩散效应与“鸡尾酒”效应而拥有强度高、硬度高、耐腐蚀性强以及抗高温软化能力强等优异性能。因此,利用高熵合金对H13钢进行表面改性可以有效提高H13钢的高温耐磨性,从而延长热作模具的使用寿命。本文利
学位
轮胎老化是造成轮胎破坏的主要原因之一。影响轮胎老化的因素有很多,如温度、氧气、紫外线等。其中,温度和氧气的影响最为关键,由这两种因素导致的老化被称为橡胶热氧化老化,主要通过橡胶的氧气消耗量来评估。然而由于橡胶氧气消耗量测试设备的研究还很不充分,难以精确地测量橡胶的氧气消耗量,阻碍了轮胎橡胶耐老化方法的研究进展。因此,研究橡胶氧气消耗量测试设备及其仿真分析方法具有重要的理论意义和工程应用价值。为了测
排气管是汽车零部件的重要组成部分,其主要作用减震降噪和延长排气消声系统的寿命。目前汽车排气管存在使用的问题是消音效果存在缺陷,长期排气不顺导致发动机受损,排气时所产生的高温及水蒸气极易造成排气管的氧化失效,在冲压工艺上排气管内锥外壳由于其复杂结构和拉深深度较大导致容易拉破和起皱。排气管内锥外壳的结构合理性至关重要,会直接影响消音效果和排气功能,从而间接影响发动机的动力。因此耐热钢材料在排气管中的开
航空航天、机械加工及汽车制造等现代工业的迅猛发展对机械传动零部件的可靠性和耐磨性等提出了更高的要求。环氧树脂(Epoxy resin,EP)材料凭借质量轻、力学性能优异和化学性能稳定等优点而被广泛的用作轴承、密封件和齿轮等零部件。但是,EP材料玻璃化转变温度较低,在摩擦或高温极端环境下,局部热量聚集,高分子链段易发生迁移,常引起材料蠕变、力学性能恶化,导致摩擦磨损加剧。基于此,本文制备了一种新型碳
学位
微生物诱导碳酸钙沉积(microbially induced calcite precipitation,简写MICP)技术在岩土工程领域得到广泛的关注与应用。该技术不仅可以有效地提高岩土材料的强度、刚度以及抗侵蚀能力等,而且固化后的岩土体仍能保持良好的透水性,为植物的生长提供良好的环境。另一方面,随着我国经济的快速发展致使石油需求量不断增长,石油勘探、运输、装卸、加工、使用过程中石油泄漏时有发生
施工安全教育对建筑从业人员的危险认知有重要作用,建筑从业人员能否在突发事故或事故前状态中正确处理问题,将大大影响施工安全事故发生的结果或避免发生施工安全事故。但建筑从业人员在接受长期传统的施工安全教育下,施工安全事故仍然持续高频发生,因此施工安全教育方式亟需进行变革和更新。近年来,尽管有众多研究对目前的施工安全事故进行追溯研究,且由于施工安全教育的研究仍然缺乏系统性的分析和探索,因此,为加强建筑从