论文部分内容阅读
随着信息技术的智能化发展,基于生物特征识别的身份认证以其唯一性、稳定性的特性,和灵活便捷的使用方式得到广泛应用,其中基于图像的生物特征识别技术又具有显著的优势,包括虹膜识别、掌纹识别、人脸识别等。在一个完整的生物识别系统的核心算法中,生物特征图像的特征分析至关重要。特征分析旨在设计或学习得到一组紧致而且有区分力的滤波器,能够提取图像鲁棒的本质属性信息,这其中主要涉及到特征描述子的构造,特征选择,特征映射等学习过程。本文将围绕多模态视觉生物识别系统,利用机器学习算法,在图像的局部特征描述,特征选择,特征映射学习等流程开展以下工作: 1.针对局部特征描述子的优化,总结了定序测量特征参数变化对纹理图像识别的影响规律,在空间差分滤波器的基础上,提出面向图像内容的纹理滤波器,同时利用空间定序测量特征和纹理定序测量特征的优势,提升了特征表达的鲁棒性和可区分力。 2.提出了基于鲁棒正则化线性规划模型的特征选择方法,是一种全局优化的稀疏学习模型,其特性为采用最大间隔的损失函数,引入特征分类能力的先验信息,并附加非负的稀疏约束。大规模的虹膜识别和掌纹识别实验验证了该模型的分类性能和泛化性。 3.提出了基于后向反馈稀疏学习模型的固定数目特征选择方法,归纳一类启发式的正则化稀疏学习模型的一般算法框架,并同时提出了鲁棒浮动稀疏学习和非负浮动稀疏学习两种扩展模型,实现了高效鲁棒的特征选择。 4.提出了基于类Boosting策略的稀疏化特征选择方法,通过改变样本权重分布选择出不同类型的特征。并结合样本选择方法构成两阶段的学习方法,能够高效的得到稀疏并且具有互补性的紧致特征集合。 5.提出了基于分段线性的特征映射和特征选择联合学习方法,通过显示映射将低维特征投影到高维特征空间,并结合单特征和成对特征的映射策略,充分挖掘所选择特征的分类能力。 综上所述,我们以生物特征图像识别为主线,深入分析其核心特征分析中各个环节的问题,并提出了相应的有效解决方案,有助于提升实际多模态生物识别身份认证系统的性能。