【摘 要】
:
该文中,我们对提升模做了进一步的研究与推广.在第一部分中,我们介绍了该文中所要用到的基本概念与引理.在第二部分中,通过引入相对co-ojective模的概念,我们给出了两个提升
论文部分内容阅读
该文中,我们对提升模做了进一步的研究与推广.在第一部分中,我们介绍了该文中所要用到的基本概念与引理.在第二部分中,通过引入相对co-ojective模的概念,我们给出了两个提升模的直和仍是提升模的又一个充分条件,得到了一系列与扩张模相对偶的结论.作为提升模的推广,在第三部分中引入了x-提升模的概念,讨论了两个x-提升模的直和仍是x-提升模的充分条件,作为推论可得到两个提升模的直和仍是提升模的充分条件.在第四部分和第五部分中分别引入了FI-提升模,SSRS-模和弱提升模的概念,从三个不同方面推广了提升模,并讨论了这些模的基本性质,如直和,直和因子等.
其他文献
该文主要研究亚纯函数的正规性问题.正规性是单复变函数中的一个重要研究课题,国内外许多学者对此作出了大量卓有成效的研究工作.在前言中,我们对复变函数及其历史背景以及这
有关半定规划问题的研究最早开始于二十世纪六、七十年代.半定规划作为线性规划的一种推广,它是建立在由半正定矩阵生成的锥上的一类凸最优化问题.半定规划在很多领域都有着广泛
该文主要讨论Cauchy-Stieltjes积分.假设Γ表示复平面c上的单位圆周,∧表示Γ上的复值Borel测度的集合.我们称f(z)=∫(1-xz)dμ(x)(α>0,μ∈∧)为Cauchy-Stieltjes积分.记其
该文给出了几个非线性波动方程的数值方法,此种方法旨在通过中心差分来实现近似.对这种方法做一下推广,就能应用到广义的波动方程上,而且该方法是无条件稳定的,无耗损的,并且
该文在文献[1]的基础上进一步研究了带有非退化不变对称双线性型的可裂的有限维可解李代数的结构.并通过对其极小生成元系的讨论得到了这类李代数的两种重要类型:扩充的Heise
在这篇论文中我们研究了算子偏序、算子不等式及C*-代数交换性的凸函数特征.全文分三章.第一章的内容是算子的星序、左星序、右星序及最小序.这一章是论文的核心内容.近来关
近些年来,无限维动力系统得到了很大的发展[12],[12],[17],[18].随着对它研究的深入和计算机能力的迅速提高,与之相关的数值研究也越来越被人们关注,这方面讨论的主要是对原
该文讨论双曲空间中常中曲率曲面的Flux.在[2]中,Rossman等人定义了双曲空间中中曲率为1的曲面的Flux.这里我们同样研究双曲空间中中曲率为1的曲面的Flux,我们给出其的另一种