论文部分内容阅读
Ti-Ni合金具有高温下稳定的奥氏体和低温下稳定的马氏体两种不同的相,孪晶马氏体、去孪晶马氏体和奥氏体三种不同的晶体结构,并通过三种结构之间的六种转变方式实现形状记忆效应或超弹性。同时其还具有优异的力学、耐腐蚀和生物相容性等性能,使得其在工业、医疗和日常生活中得到广泛的应用。但是Ti-Ni合金制备和加工过程中存在的困难限制了其进一步的应用,增材制备Ti-Ni合金技术的出现为其应用范围的扩大提供了希望。然而,目前增材制备Ti-Ni合金的研究尚处于起步阶段,因此研究增材制备参数对Ti-Ni合金性能的影响显得尤为重要。本文系统研究了 SLM增材制备参数对Ti-Ni合金性能的影响,及其后处理改性和多孔样品的性能,研究结果表明:使用粒度范围为15~60 μm的Ti-Ni预合金粉末进行SLM增材制备,固定激光功率、扫描间距和预合金粉末层厚度分别为200 W、100 μm和50 μm,激光扫描速率为1000 mm/s时得到相对密度为99.5%的SLM增材制备实体块状样品。此时的输入能量密度为40 J/mm3,且样品与常规铸态样品相比具有高的压缩断裂强度和低的压缩断裂应变。改变激光扫描速率会在样品内部形成不同种类的缺陷,但对Ti-Ni合金的相组成、相变行为以及显微硬度的影响较小。对采用最佳打印参数制备的样品进行HIP热处理改性,通过使组织均匀化和消除冶金缺陷等的共同作用将其拉伸断裂强度和塑性分别较打印态提升63.7%和23.2%。实体块状样品室温下主要由B19’孪晶马氏体组成,但增材制备过程中较快的冷却速率会使得B2相在室温下得到保存,而特殊的热循环过程、大量的位错以及晶界Ti2Ni相在局部区域形成的应力场使样品出现R相,并导致增材制备Ti-Ni样品的相变温度As小于Ms。而Ti2Ni相的析出使得基体中的Ni含量升高,并且Ti2Ni相析出对基体相变温度降低的效应大于Ni挥发所造成的相变温度升高的效应,造成SLM制备Ti-Ni合金的相变温度低于预合金粉末的相变温度。热等静压过程并不改变棒状拉伸样品的相组成,而高温和高压都会影响样品的相变温度,但是者本身的影响均不如在炉冷过程中Ti2Ni相析出行为对相变温度影响的效应大。SLM增材制备高孔隙率Ti-Ni多孔样品的加热和冷却过程均为单步相变,各相变点的温度低于原始预合金粉末,Ms相变点温度低于As,且其压缩强度、弹性模量和疲劳性能均随孔隙率的增大而降低。样品应力疲劳过程中存在相变行为,使得疲劳裂纹萌生阶段延长且滞后回线变为滞后环。滞后环的形成与二次裂纹和裂纹尖端的偏折使得其疲劳寿命达106时,归一化后测试应力与屈服应力的比值可达0.24~0.33,高于一般多孔材料。样品的整个疲劳失效过程由循环蠕变和疲劳损伤构成,循环蠕变为疲劳失效主要原因。本文研究了热处理温度对EBM用预合金粉末性能的影响,确定了 EBM打印过程中底板和粉末层的最佳预热温度,并制备出致密度良好的实体样品。结果表明:EBM用53~106 μm Ti-Ni预合金粉末与SLM用15~60 μm预合金粉末不同,其表面卫星球数量增多,部分大直径粉末表面出现轻微的包覆现象,同时组织和成分的不均匀、内应力和位错的引入使得EBM用预合金粉末不同于SLM用预合金粉末的单步相变过程而呈现多步相变。随着热处理温度的升高EBM用预合金粉末由多步相变逐渐于550℃转变为单步相变,相变点也随着热处理温度的升高而升高,热处理温度在650℃后保持稳定。结合预合金粉末的烧结状态,确定EBM最佳预热温度确定为750℃。EBM制备参数FO和SF的多种组合均可以制备出相对密度大于97%的等原子比Ti-Ni合金块体。与SLM制备等原子比Ti-Ni合金块体不同,EBM制备Ti-Ni合金块体相变温度大于所使用预合金粉末的相应相变点温度,但制备参数FO和SF的改变对制备样品的相组成、相变温度以及显微硬度的影响规律与SLM制备块体相同。FO和SF的改变可以在Ti-Ni合金块体样品中引入不同的打印缺陷,其中贯穿型裂纹缺陷会使压缩力学性能大幅度降低。