【摘 要】
:
2007年秋季,戎小春教授在首都师范大学开设了Alexandrov几何讨论班。本文就是以讨论班的前期内容为基础,参考了Shiohama的专著Anintroduction to the geometry of Alexandrov space写出的一篇综述。首先,本文整理了内蕴度量空间曲率有下界的几种定义方式及其等价性,并应用余弦定理给出Alexandrov引理一个新的证明。其次,举一些曲率有下界的
论文部分内容阅读
2007年秋季,戎小春教授在首都师范大学开设了Alexandrov几何讨论班。本文就是以讨论班的前期内容为基础,参考了Shiohama的专著Anintroduction to the geometry of Alexandrov space写出的一篇综述。首先,本文整理了内蕴度量空间曲率有下界的几种定义方式及其等价性,并应用余弦定理给出Alexandrov引理一个新的证明。其次,举一些曲率有下界的Alexandrov空间的例子,并计算了测地线以及相关空间的曲率.最后,我们介绍了整体化定理:在加入了完备性条件后,曲率有下界的定义在整体上仍然成立。我们采用[BGP]的证明思路并补齐了细节。
其他文献
表面增强拉曼光谱法(Surface Enhanced Raman Spectroscopy,SERS)是一种基于待测物分子对光的散射效应而建立起来的分析技术,SERS因其高灵敏度、光谱信息丰富、检测时间短等优势受到了广泛关注。但是,SERS分析的再现性、重复性、多功能性以及长期稳定性在实际应用中仍然存在诸多不足。金属有机骨架材料(Metal Organic Frameworks,MOFs)与贵金属
渗流模型首先是由BroadbentS.R.和Hammersly J.M.(参看文献[10])在1957年提出的,并且在近六十年来被深入地研究(参考文献[11]),这一统计物理模型的建立大大扩充了概率的研究领域,并且还为此模型提供了严格的数学依据.本文首先回顾了渗流模型的背景,并给出了一些经典渗流模型的知识.然后给出了一维直线上整数格点渗流模型,相应地介绍了部分已有的结论(当M=2时的结论)文章的后
本文将热方程的次解估计推广至具有低阶项的热型方程的次解估计,并讨论了张量型的极值原理及向量丛上的Weinberger-Hamilton型极值原理.在Ricci流的作用下,一些曲率的发展满足热型方程或方程组,利用极值原理,可以得到这些曲率在Ricci流作用下随时间的变化情况.
随着铝电解技术的不断发展,铝电解槽的寿命引起了人们的广泛关注。防渗料作为铝电解槽的重要组成部分,防渗性能的好坏直接决定了铝电解槽的寿命长短。防渗料的作用是与电解质生成黏度较高的霞石和钠长石防止电解质的进一步渗透,保护下层的保温材料。目前工业电解槽中应用的防渗料成分不尽相同,防渗效果也千差万别,防渗料与电解槽渗透组分的反应机理尚不明确。本论文通过实验室研究对铝电解槽渗透组分与防渗料的反应机理进行研究
环境友好型铌酸钾钠(K0.5Na0.5NbO3;简写为KNN)无铅压电材料,由于其低的介电常数和较高的机电耦合系数,被认为是一种很有应用前景的压电材料。近十年来,KNN基陶瓷的压电性能获得了巨大提升,其压电性能已经能和商用的锆钛酸铅(PZT)压电材料相媲美。然而,高性能的KNN基陶瓷通常是建立在两相共存的结构基础上的,通常材料较“软”,其温度稳定性和耐疲劳特性较差,不利于材料在驱动器、换能器等电子
本文主要处理二维Euler方程两束平面疏散波相互作用的自相似解的构造。这项研究是在[1]的基础上进行的,我们的目的在于运用直接方法得到[17]文中的所有结果(不同于[17]中的速度图变换的方法)。直接方法的优势在于,相对于速度图变换方法更加简单,而且避免了速度图变换在处理简单波和边界时的困难;因而直接方法在研究跨音流时有很大的潜力。这种方法是由Euler方程在自相似平面上关于音速和特征倾角各种分解
近年来,全国主要交通集团在各省委省政府的主导下进行了重组整合。2018年江苏省重组成立江苏铁路投资发展有限公司并由江苏交通控股集团控股;2020年山东高速吸收合并齐鲁高速后,成为首家万亿级省属交通集团;2021年四川省两家交通集团四川交投集团和四川铁投集团采取新设合并的方式成立蜀道集团。本文梳理了全国15家省级交通集团的主要财务数据,选取了资产规模超过6500亿元的4家省级交通集团,即山东高
在公司"一体四翼"发展布局中,支撑产业和战略性新兴产业分别涵盖哪些业务?发挥了哪些重要作用?"十四五"期间各自的发展思路、目标及重点工作分别是什么?发展前景如何?近日,本刊记者就这些问题采访了公司产业部主任奚国富。《国家电网》随着公司的快速发展,公司的支撑产业业务范围不断扩大。目前,公司的支撑产业分为哪几类?分别发挥哪些重要作用?