切换导航
文档转换
企业服务
Action
Another action
Something else here
Separated link
One more separated link
vip购买
不 限
期刊论文
硕博论文
会议论文
报 纸
英文论文
全文
主题
作者
摘要
关键词
搜索
您的位置
首页
学位论文
带记忆项的非线性方程解的能量衰减估计
带记忆项的非线性方程解的能量衰减估计
来源 :四川师范大学 | 被引量 : 0次 | 上传用户:edcujmtgb
【摘 要】
:
本文分别研究了一阶Cahn-Hilliard方程在非线性动态边界条件和一类二阶粘性方程在绞合边界条件下解的能量衰减估计,通过构造合适的能量函数,借助微分不等式研究了这两类方程在
【作 者】
:
涂馨予
【机 构】
:
四川师范大学
【出 处】
:
四川师范大学
【发表日期】
:
2016年01期
【关键词】
:
Cahn-Hilliard方程
非线性动态边界
二阶粘性方程
绞合边界条
能量衰减估计
下载到本地 , 更方便阅读
下载此文
赞助VIP
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文分别研究了一阶Cahn-Hilliard方程在非线性动态边界条件和一类二阶粘性方程在绞合边界条件下解的能量衰减估计,通过构造合适的能量函数,借助微分不等式研究了这两类方程在记忆核满足一定衰减条件时解的能量衰减方式。
其他文献
序列密码中k错线性复杂度算法与位置错误谱的研究
序列密码是密码学中最主要和最重要的组成部分之一,也是保密通信中的一个重要的密码体制,而线性复杂度和k -错线性复杂度是衡量伪随机序列的密码强度的重要指标。如果改变一
学位
序列密码
周期序列
线性复杂度
k -错线性复杂度
k位置错误谱
关于几类捕食者-食饵模型的研究
近年来,捕食关系是数学与生态学界研究的一个主要课题。捕食者-食饵相互作用关系的研究具有非常重要的理论意义和应用价值,其中生物种群持续生存是捕食理论的一个重要而又广泛
学位
食饵模型
捕食关系
常微分方程
定性理论
全局稳定性
极限环
经典Banach格上保不交算子的性质
保不交算子是Riesz空间上一类非常重要的算子,本文在阐述了相关历史背景和预备知识后,讨论研究了经典序列Banach格上保不交算子的值域空间刻画和保不交算子和的一些性质。主要
学位
Banach格
保不交算子
Riesz空间
与本文相关的学术论文