【摘 要】
:
图像是日常生活中的重要信息媒介,在获取、使用等过程中,不可避免受到噪声的影响,破坏图像的质量,妨碍后续的处理。图像去噪问题是典型的病态逆问题,通常是图像迭代求解算法的关键步骤,需要利用先验信息对其进行正则化约束。通常图像去噪技术利用单幅图像的各种先验特征,结合不同滤波方法完成去噪,可采用的先验信息有限,难以有效选取特征保护图像边缘细节,且需手动多次调整参数,效率较低。近年来以卷积神经网络为代表的深
论文部分内容阅读
图像是日常生活中的重要信息媒介,在获取、使用等过程中,不可避免受到噪声的影响,破坏图像的质量,妨碍后续的处理。图像去噪问题是典型的病态逆问题,通常是图像迭代求解算法的关键步骤,需要利用先验信息对其进行正则化约束。通常图像去噪技术利用单幅图像的各种先验特征,结合不同滤波方法完成去噪,可采用的先验信息有限,难以有效选取特征保护图像边缘细节,且需手动多次调整参数,效率较低。近年来以卷积神经网络为代表的深度学习技术,通过大量数据训练学习各种图像特征的映射关系,直接去除图像噪声,但容易模糊图像边缘等重要细节特征,导致图像过于光滑。紧框架理论能多尺度分析图像特征,并从特征系数重构出原图像。本文利用紧框架理论结合深度学习的优点,通过构建网络模型智能化学习紧框架特征稀疏表示,自适应估计正则化参数来处理图像特征,实现既去除噪声又保护细节。主要工作如下:(1)提出了紧框架结合卷积神经网络的去噪模型TFCNN。首先,利用紧框架对图像进行多分辨率分解,得到不同频带的图像特征,表征图像中的边缘细节以及噪声。其次,利用卷积神经网络学习紧框架特征系数,分析局部特征的有效性,实现正则化参数的自适应估计。最后,使用软阈值算子对特征系数进行伸缩处理,实现去除噪声。(2)提出了基于残差思想、空洞卷积的紧框架去噪模型ITFCNN。首先,将整体残差映射作为卷积神经网络的学习目标,利用残差思想简化正则化处理流程。其次,在卷积神经网络的浅层采用不同尺寸卷积核,更好地实现图像到特征的初级映射。然后,在网络中设置残差单元结构,保持梯度的传递,提升训练效果。最后,合理使用空洞卷积,在不增加复杂度的前提下加大网络感受范围,学习更丰富的特征。本文根据主客观指标综合评价去噪效果,与主流方法进行对比,通过实验论证算法的有效性。实验结果表明,本文提出的TFCNN与ITFCNN在主客观指标上均能取得一定的提升,可以更好地滤除噪声并保留图像细节。
其他文献
在真实场景中,由于被拍摄物体快速运动、拍摄者手抖等各种原因,使得运动模糊成为最常见的模糊类型之一,运动模糊图像复原技术成为了一大研究热点。近几年,随着计算机处理速度和存储能力的提升,在运动模糊图像复原这一任务中,利用深度学习对模糊图像进行复原的方法发展迅速,该类方法使用卷积神经网络自动估计模糊核,显著提高了复原效果。主流的运动模糊图像复原算法均需要使用成对的数据集进行训练,而获取成对的数据集往往比
图像分割是按照不同特征将图像划分成互不重叠、具有独特性质的各个区域,从而提取感兴趣目标的位置或者边界的过程.这一技术是进一步图像分析、理解的基础和关键,被广泛应用于多个领域,特别是在图像处理领域占据着重要的地位.迄今为止,上千种分割方法已被提出,通常都是针对特定问题的图像分割方法,具有一定的针对性和局限性,无法形成一个适合所有类型图像通用的分割算法.基于变分水平集方法和基于区域的活动轮廓分割方法在
背景:人工全膝关节置换术(Total knee arthroplasty,TKA)中在使用旋转平台假体(Rotating-platform prosthesis,RP)时,对后交叉韧带的不同处理方式中有两种假体设计分别对应两种手术方式,其中一种是后交叉韧带保留型旋转平台假体(Posterior cruciate-retaining rotating-platform prosthesis,CR-R
量子计算是依赖于量子力学原理来获得解的一种新型计算模型,由于量子计算的并行计算能力,量子计算在解决某些特定问题时,它比经典计算的效率要高。Grover量子搜索算法是量子算法中具有广泛应用前景的一种算法,算法可以在量子线路复杂度为/O(2n/2)的情况下求解一个规模为2n的搜索问题。本文从降低Grover算法的量子线路复杂度的角度出发,提出两种改进的算法,并将改进的算法应用到3-SAT问题上。1.为
随着信息化和数字化的快速发展,人们对信息传播质量的要求日益提高,作为传播最为广泛的媒体之一,数字图像的成像质量也成为了各行各业关注的焦点。然而,成像硬件、成像环境以及传输技术等条件的限制往往会降低图像的分辨率,导致图像信息的丢失。因此,如何将低分辨率图像通过算法重建为高分辨率图像始终是图像处理以及计算机视觉领域的一个热门研究方向。近几年利用深度学习算法进行图像超分辨率重建的研究逐渐增多,同时也取得
单目图像的三维人体姿态估计是计算机视觉中一项基本但富有挑战的任务,其目的是检测单目图像中的人体姿态并将其投影到三维空间中。随着科学技术的快速发展,三维视觉已成为人工智能研究和应用的热门领域,越来越多的专家学者投入到该领域的探索中。三维人体姿态估计精度一方面受图像外部遮挡、自遮挡和光线等因素影响,另一方面人体结构的特殊性也会给该问题的解决带来诸多困难。并且,如何将二维空间提升到三维空间本身是一个复杂
随着大数据、人工智能的高速发展,大数据系统平台数据量的规模呈爆炸式增长,庞大的数据量对数据存储和网络传输提出了不小的挑战,为了应对这一系列挑战,必须保证大数据平台数据存储中心的高效率存储和网络传输的高吞吐量,对平台上待存储的数据先进行压缩后再处理是应对这一挑战的有效手段,Gzip压缩算法因其压缩率高、压缩速度快被广泛应用于数据压缩领域。传统的Gzip软件压缩虽然可以实现数据压缩,但会占用通用处理器
随着大数据时代的到来,挖掘海量数据流的实时价值对于各行各业来说越来越重要。这类高速产生的流式数据通常具有实时性、动态性及持续性等特征,并且人们很难预测其未来的分布特性。分布式流处理系统可以满足企业人员处理实时数据流的需求。为了提高处理数据流的吞吐量,分布式流处理系统会利用流应用中的数据并行性。然而,倾斜分布的数据流常常会导致算子的并行实例之间的负载分配不均衡。其中,高负载的节点会拖累系统的处理速度
步态是一种流行的生物识别技术,可以远距离识别人类。它应该是唯一可以在远距离收集的生物特征。由于其独特的优势和在视频监控中的巨大潜力,在过去的20年中,许多研究人员对其进行了研究。尤其是近几年来,随着深度学习的发展,步态识别有了很大的提高。如今指纹、人脸识别的技术愈发成熟,但是步态识别技术的应用还面临许多挑战,比如摄像头视角变化、衣着变化等对识别的影响,所以我选择步态识别这个课题,希望能为解决步态识
多任务进化是进化领域中的一个新兴研究方向,主要研究如何充分利用任务之间的协同作用提高种群搜索的效率和性能。相对于传统的单任务进化,多任务进化能够通过多个任务之间的知识迁移提高算法的性能和进化的效率。基于多任务进化框架提出的单目标多任务进化算法和多目标多任务进化算法已经进化获得了优异的成果。本文对多任务进化算法进行了研究,并且对该领域做出了以下贡献:(1)提出了一个基于种群分布的两阶段知识迁移多任务