【摘 要】
:
随着工业技术不断发展,检测技术与测量仪器也随之进步,自动化测量仪器由于其可以在线高效测量的优点应用场景广阔、前途广大。传统关节臂坐标测量机需人工拖拽完成测量,效率较低,且测量姿态不可控,人为误差无法修正,因此本课题组提出了对自驱动关节臂坐标测量机的研发,该仪器能够满足自动测量需求,测量力与测量姿态可控。本文以课题组设计的自驱动关节臂坐标测量机为研究对象,对自驱动关节臂坐标测量机的最佳测量位姿进行研
【基金项目】
:
国家自然基金项目,顶目名称:自驱动关节臂坐标测量机精度保障技术研究,项目编号:51775163;
论文部分内容阅读
随着工业技术不断发展,检测技术与测量仪器也随之进步,自动化测量仪器由于其可以在线高效测量的优点应用场景广阔、前途广大。传统关节臂坐标测量机需人工拖拽完成测量,效率较低,且测量姿态不可控,人为误差无法修正,因此本课题组提出了对自驱动关节臂坐标测量机的研发,该仪器能够满足自动测量需求,测量力与测量姿态可控。本文以课题组设计的自驱动关节臂坐标测量机为研究对象,对自驱动关节臂坐标测量机的最佳测量位姿进行研究。本文首先建立了自驱动关节臂坐标测量机的正运动学模型。选用经典DH方法建立了自驱动关节臂坐标测量机的理想数学模型以蒙特卡洛伪随机数法与边界划分模拟得到自驱动关节臂坐标测量机的测量空间分布。其次对自驱动关节臂坐标测量机的逆运动学进行分析,提出了改进的逆解算法。以雅可比矩阵为核心,在基本牛顿法的基础上,引入参数保证收敛性,提高算法迭代速度与收敛性,减少初值影响。并分析奇异点类型,通过奇异值分解规避奇异点问题。以数值逆解算法结果为模型初值,以ADAMS、SOLIDWORKS、ANSYS联合建立自驱动关节臂坐标测量机刚体模型与刚柔耦合模型。通过刚体模型得到多组仿真解集,带入刚柔耦合模型模拟实际运动结果计算变形误差。通过分析仿真结果,找到测量姿态与变形误差间的关系,由重力产生的弹性形变影响最小的位姿即为测量点的最佳测量位姿。最后构建实验平台,以课题组研发的自驱动关节臂坐标测量机样机为实验主体,使用三坐标测量机为标定仪器,说明姿态变形误差对测量会产生一定影响,接着使用激光跟踪仪进行实验,验证仿真结果的正确性,确定最佳测量位姿。本文得到的自驱动关节臂坐标测量机的最佳测量位姿相关结论可以指导轨迹规划,使测量机以最佳测量位姿完成测量,提高测量精度。
其他文献
工程结构设计的目的就是利用现有的技术条件,以最为经济的方法使得结构在安全性、适用性和耐久性之间达到合理的平衡,在满足各种预期功能的同时产生可观的经济效益。结构可靠性分析采用不确定性力学模型,以概率度量的形式合理地评估结构在不确定因素影响下的安全性能。其中,抽样方法因其简单性和实用性在可靠性评估中广泛使用。然而,它总是需要大量的样本来保证计算精度。本文以传统的抽样方法为基础,对结构可靠性分析方法进行
随着工业4.0对制造质量要求的提高和技术的变革,在精密几何量测量领域对现代光电传感技术提出了新的挑战。其中,光谱共焦位移测量具有高精度、抗干扰、无机械轴向扫描的特点而逐渐成为新型位移传感测量的代表方向。为了实现深度识别能力,该方法需要校准波长与位移的关系,然后从反射光信号中提取样品表面的峰值波长,通过色散关系计算出相应的位移或高度。因此研究光谱共焦位移测量系统的本质原理以及信号处理关键技术具有重要
脑深部电刺激(Deep-brain stimulation,DBS)已被证实是一种有效的治疗手段,可减轻帕金森病和肌张力障碍。胸部电池供电的传统DBS会给人体组织带来不适感,还会受到电池尺寸和寿命的限制。为了给具有多种电压源的可植入医疗设备供电,并使其与皮肤外部单元进行通信,短距离无线能量和数据传输是一种可行的方式。研究表明,电荷控制刺激利用电容器组将电荷转移到组织中,既高效又安全,适用于DBS。
微透镜阵列作为一种重要的微光学元件,被广泛应用于显示、成像、传输、测绘等多个方面。微透镜阵列的制造技术成为国内外研究者们关注的热点。目前,已经有许多行之有效的微透镜阵列制造技术被提出,不同制造技术适用于不同的材料以及应用场景。本文基于聚氯乙烯(Polyvinyl chloride,PVC)凝胶材料独特的电致形变特性和优异的光电性能,提出了一种基于电场诱导成型制备PVC凝胶微透镜阵列制造方法。在PV
自英国巴斯大学Russell P.S.J.课题组成功制备了第一根光子晶体光纤以来,光子晶体光纤迎来了蓬勃快速的发展,其中液晶填充光子晶体光纤作为填充型光子晶体光纤发展中的一个分支,呈现出广泛的应用。液晶填充光子晶体光纤结合了液晶优异的光学性能和光子晶体光纤特殊的微结构,使得液晶填充光子晶体光纤可以设计成各种光学器件,如滤波器、偏振分光器、调制器和热光开关等光学器件。其中液晶填充光子晶体光纤制备的热
助听器是一种重要人耳听力辅助装置,经历了早期的振动版本、机械版本、自动化版本,到今天的智能版本的发展,那么目前的助听器更加关注人耳的使用感受和听觉效果,而伴随着大数据和人工智能的发展,结合助听器进行相应的设计和应用成为了可能。本文基于深度学习算法,研究了一种人工智能助听器系统,在以往的听力系统应用中,主要应用传统的数字信号处理技术进行频谱分析、噪声分析等。本文则利用深度学习技术、数据库分析技术、大
微透镜阵列作为一种重要的微光学元件,在立体显示、光信息存储、光通信等领域有着重要的应用价值和广阔前景。然而微透镜阵列的加工问题成为制约其快速发展及应用的重要因素。因此微透镜阵列的低成本、高效率、大批量的制备技术成为众多学者研究的课题。本文主要提出利用浸润性调控液滴排布技术制备微透镜阵列的方法。该方法能够高效、快速制备大面积、高通量的微透镜阵列,并且实现透镜单元的形状、尺寸、位置、曲率的精确调控。主
近年来,大气挥发性有机物(VOCs)污染问题日益突出,我国大气环境中VOCs排放量巨大、来源复杂,VOCs在大气中积累易发生二次化学反应,在夏季是造成臭氧(O3)超标和光化学烟雾等大气环境污染事件的重要前体物,我国在“十四五”规划中将VOCs取代SO2,成为大气治理的5个重要指标之一。本研究以合肥市为例,在2018~2020年6~8月对大气VOCs进行监测,共检出56种组分,分析VOCs组成及浓度