五轴数控机床球度误差与垂直度误差的辨识及补偿方法研究

来源 :天津工业大学 | 被引量 : 0次 | 上传用户:woyuxiandai
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
目前数控机床大多采用多轴联动的形式进行零件加工,加工效率进一步得到了提高,广泛应用于航空航天、汽车等领域精密零件的加工。但数控机床多轴联动同时进行加工使得机床误差进行耦合,无疑会对被加工零件的精度产生影响无法满足使用要求。因此,本文旨在提出一种针对多轴数控机床平动轴三轴联动时误差情况进行测量及辨识的快速检测方法,并通过误差补偿工作以期提高多轴数控机床的加工精度。本文分别从机床误差建模、平动轴垂直度误差识别实验、垂直度误差补偿以及机床球度误差四个方面进行研究,主要工作内容如下:多轴数控机床综合误差模型的建立过程中采用了指数积公式理论,与传统的齐次变换矩阵法不同,无需建立局部坐标系,在全局坐标系下建立包含机床平动轴三项垂直度误差在内的整体机床误差模型,简化误差模型建立及运算的过程。提出一种基于球杆仪设备的球面“S”型路径对数控机床平动轴垂直度误差进行测量的快速检测方法。与现有两个平动轴联动在平面中对垂直度误差进行多次测量的检测方法不同,所提出的误差检测方法采用机床三个平动轴联动的形式仅需一次安装,避免多次安装测量中安装误差的影响,使得误差检测数据采集更加准确与全面,仅一次实验便可识别出机床平动轴的三项垂直度误差。结合实验采集数据基于伪逆矩阵方法进行误差解算,采用不同于误差测量的球面螺旋线路径对测量结果进行NC(Numerical Control)补偿验证,误差补偿路径与误差测量路径安装定位方式相同,无需重复安装,由于所提出球杆仪检测与补偿路径均为空间不规则球面轨迹,分别提出了坐标变换法与实验路径均分的方法,解决了球杆仪运行轨迹过程中两基座间距离不恒定、相对运动速度与机床不同步的问题,提高了实验数据的准确性与误差检测实验的精度。补偿实验采用对比实验验证方法,即通过误差补偿前后机床代码分别进行实验,对比两次实验所采集实验数据,验证检测方法的有效性,补偿后的残差比补偿前的残差减少约75%。研究了数控机床球度误差对于机床加工精度的影响,提出了基于最小区域法的评价方法对机床球度误差进行误差解算。由于实验测量路径在球面中进行,故探究机床球度误差对于机床加工精度的影响。本文首先结合球面“S”型路径所采集实验数据基于最小二乘法确定了最小二乘球的球心位置与半径,计算出球度误差为16.014μm。现有评价方法多采用最小二乘法的形式对球度误差解算,但由于最小二乘法仅是对球心位置进行估计使得误差解算结果不准确,故本文以最小二乘球的球心位置为基准采用最小区域法对球心位置进行进一步搜索确定,找到满足要求的更准确球心位置,以新的球心位置为基准进行误差解算,采用最小区域法计算出的球度误差为13.2μm,使得球度误差解算结果进一步提高。
其他文献
最近,神经网络的动力学行为已经引起了众多研究者的关注,这是由于它可以广泛地被应用在图像处理,模式分类,优化等。众所周知,电子在不均匀的电磁场的运动可以引起反应扩散现象。因此,反应扩散现象应该被考虑在神经网络中。到目前为止,反应扩散神经的动力学行为已经吸引了许多研究人员的注意。再者,由多个相同或者不相同的反应扩散神经网络组成的耦合反应扩散神经网络也引起了不同领域的众多学者的关注,例如:谐波振荡的产生
地震自古至今都是最危险的地质灾害之一,地震后若能够及时发现受困人员并进行及时救治可大大减少人员伤亡。基于此需求本文研究微型地震搜救探路模型机器人,论文的主要内容和创新性工作如下:1.针对模拟震后复杂搜救环境的迷宫任务需求,对探路模型机器人进行系统构建,包括主控部分、运动控制部分和传感电路部分。详细分析了探路模型机器人运行原理,对探路模型机器人任务执行过程中的方向及方向转换、坐标更新、墙壁资料存储及
气液两相流是多相流中的常见形式之一,其广泛存在于煤炭输送、石油开采、原油运输、工业排污和气力输送等与人类生产生活和实践活动密切相关的过程中。通过一定的测量技术来研究气泡的分布状态,对于掌握气液两相流的流动机理具有重要意义。本文以液相中的气泡为研究对象,提出了基于改进卷积神经网络的气泡流场三维重建方法,再现气泡流场的三维分布,为进一步分析气相在液相中的运动特性奠定基础。本文针对气液两相流研究中的气泡
随着社会经济与智能科技的飞速发展,碳纤维材料因其质量轻、模量高、耐高温、抗疲劳等优秀品质在民用制造、航空航天、机械装备和军工领域等方面已经得到了广泛的应用与发展,因此以高效率的机织生产方式为核心的碳纤维装备系统日益受到了研究者的青睐。为了改善在复杂的非线性网络化控制系统中织物的工艺质量并减少外界干扰带来的影响,本文以碳纤维角联织机为研究对象,围绕纱线的张力波动问题对控制策略展开深入研究。本文首先分
近几十年来,在控制领域中,非线性和时滞一直是神经网络系统的重点和热点。在神经网络系统的具体实现和专业应用中,神经元的固定传输时间和有限的信息传输速率不可避免地会导致系统的时延;另外,环境噪声,未知参数以及各种实际项目中经常遇到的干扰,这使得开发精确的数学模型非常困难。不确定性的存在不可避免地使系统性能下降,甚至使动态系统不稳定。如今,针对复杂的未知非线性系统问题,滚动优化控制可以更好地适应实际系统
航拍图像的目标检测与识别是一项非常重要的任务,广泛应用在地图制图,灾害预测与治理,农业检测,城市的规划和建设等领域。随着深度学习技术的快速发展,基于深度神经网络的航拍图像目标检测算法取得了远超传统目标检测算法的效果。然而,这些深度学习算法应用到实际的航拍检测系统时,往往面临计算开销过大的问题,要达到实时检测需要使用多块高性能的GPU,巨大的算力要求限制了算法在航拍图像实时检测任务上的应用。因此,本
随着多机器人技术的不断发展,多机器人技术在多个领域得到应用,受到了越来越多的关注。单个机器人由于自身性能的限制无法满足人们日益增长的对机器人性能需求。多机器人系统具有更好的性能,能够协作完成更复杂的工作。多机器人编队控制是多机器人技术的一个重要的方向,对多机器人编队控制进行研究具有重要的意义。本文以轮式移动机器人作为研究对象,对多移动机器人的预定性能编队控制问题进行研究,论文主要研究内容如下:对多
癌症标志物是体内发现的一种生物分子,它是癌症发现、预防的征兆,它的识别对癌症的预防以及治疗都有重要的意义。基因表达谱数据是一类非常重要的癌症标志物,从数万种基因表达谱数据中挖掘出不同癌症类型的标志物对于阐明癌症的形成机制、预防癌症的产生和发展都有重要意义。本文的研究分为三个方面:1.本文提出了一种数据标准化的方法。首先将原始数据进行标准化处理,将化学分子间的乘积关系转化为线性关系,将转换后的数据在
遮挡是实际生活中普遍存在的现象,被遮挡的物体会缺失部分信息丢失,严重影响着计算机对于图像的理解和分析,因此遮挡一直是阻碍着计算机视觉一些重要研究的发展。被遮挡的图像不便于我们对于图像的分析和处理,也影响了我们对于图像的目标检测与识别等研究。图像修复指复原图像中缺损位置的信息。主要是通过图像中现存信息的特征,去还原图像中的缺失部分。人脸修复作为图像修复领域重要的一个分支,在实际生活中具有重要的应用价
伴随着深度学习技术的不断更新发展,深度学习在多个领域都有广泛的应用。当前的深度神经网络模型变得更为复杂,这就意味着模型的参数量与计算量越来越大,对于部署模型所用的硬件平台要求也是愈来愈高。然而,诸如自动驾驶、遥感卫星目标检测等任务时,需要在极低的延迟下对周围的目标进行检测识别。数据必须在边缘端完成主要的计算,但由于边缘端对于所使用的硬件平台有非常严苛的性能和功耗限制。因此,在功耗和性能受限的情况下