论文部分内容阅读
随着我国城市轨道交通的快速发展,地铁车站主体结构渗漏现象屡见不鲜,严重影响其运行安全。究其原因,主要是车站主体结构混凝土抗渗性能差,以及其与隧道、辅助结构等连接处防水结构施工质量等问题所致。因此,针对地铁车站特点,研究具有良好抗渗性的混凝土,对解决地铁车站渗漏通病具有重要意义,已成为国内外业界高度关注的研究热点之一。本文以合肥地铁某在建车站为工程背景,将纤维素纤维抗渗混凝土作为研究对象,采用多种材料混掺配制抗渗混凝土技术途径,基于正交试验设计,试验研究不同配合比混凝土物理力学、补偿收缩与抗渗性能,分析混掺材料掺量对抗渗混凝土主要性能影响,阐述其机理,获得适应地铁运行环境条件的抗渗混凝土。主要研究工作与成果如下:(1)试验表明,当粉煤灰、矿粉在10%~20%内掺量时,虽然混凝土的3d抗压强度降低,但混凝土 28d抗压强度有所提高;当外掺8%的膨胀剂时,混凝土7d、28d的抗压强度均降低;0.9~1.5kg/m3掺量的纤维素纤维,可有效提高混凝土劈裂抗拉强度。(2)混凝土中的纤维素纤维可有效约束混凝土变形,改善混凝土的受力状态,从而提高了混凝土试样的抗裂性能、抗拉韧性、延性以及残余强度。(3)混凝土试样水养14d达到最大膨胀变形,随后转入干空养护失水收缩至28d膨胀变形趋于稳定;正交分析可知,掺10%~20%粉煤灰、0.9~1.5kg/m3纤维素纤维均可促使膨胀剂膨胀,而掺入10%~20%矿粉将抑制其膨胀。(4)混凝土孔隙结构低场核磁共振谱峰均为三峰结构,依次对应小、中、大孔隙结构,随着粉煤灰、矿粉的掺入,小孔隙面积降低约52%,中孔隙面积随着纤维素纤维在0.9~1.5kg/m3掺量的增加而减小。(5)通过正交分析并进行试验验证,得到的最佳防水混凝土配合比为水泥:粉煤灰:矿粉:膨胀剂:砂:石子:水:纤维素纤维:减水剂=1:0.214:0.214:0.086:2.749:4.123:0.636:0.005:0.012;该配合比相比基准组 28d 抗压强度、劈裂抗拉强度分别提高17%、14.6%,小孔隙面积、孔隙度、相对渗透系数分别减少 52.5%、55%、32%。图23表21参64