【摘 要】
:
透射电子显微镜三维重构方法已经成为研究材料微观组织结构间交互作用等挑战性课题的重要工具,为了进一步推进三维重构方法的广泛应用,需要设计新的实验设备,突破其理论和实践瓶颈。本文工作中,作者自主研发了应用于透射电子显微镜的四自由度原位纳米操纵系统(简称为X-Nano系统),设计并制造了微型压电纳米操纵器,实现三向平移及旋转自由度的稳定、精确操纵,从多个方面提高了三维重构的效率和质量。此外,XNano系
论文部分内容阅读
透射电子显微镜三维重构方法已经成为研究材料微观组织结构间交互作用等挑战性课题的重要工具,为了进一步推进三维重构方法的广泛应用,需要设计新的实验设备,突破其理论和实践瓶颈。本文工作中,作者自主研发了应用于透射电子显微镜的四自由度原位纳米操纵系统(简称为X-Nano系统),设计并制造了微型压电纳米操纵器,实现三向平移及旋转自由度的稳定、精确操纵,从多个方面提高了三维重构的效率和质量。此外,XNano系统可以集成多种原位实验模块,以获得不同的原位实验功能。利用X-Nano系统可以将纳米操纵、动态观察与三维重构进行有机结合,实现基于透射电子显微镜的准四维(即三维空间和时间维度)微纳米力学表征实验,以实现对原位加载下微结构演化的三维动态表征,为后续针对强共价材料微纳米力学测试系统的开发以及变形机制的研究提供了新手段。我们利用X-Nano系统对单晶硅纳米柱样品进行了准四维微纳米力学表征实验,首次给出了硅样品中三维位错网络的准动态演化过程。X-Nano系统促进了力学与材料交叉领域的发展。浙江大学与燕山大学的两个团队合作,使用X-Nano系统作为准四维微纳米力学表征平台,在透射电子显微镜下对金刚石纳米针进行了原位弯曲实验。实验结果表明:金刚石纳米针的最大弹性拉伸应变对尺寸、晶向及表面粗糙度有很大的依赖关系。其中,在直径为60 nm的<100>取向的金刚石纳米针中,实现了高达13.4%的可回复拉伸应变和125 GPa的拉伸强度。该强度与经典的Griffith理论强度极限相当,是迄今为止文献报道的最高强度值。巨大的弹性应变可允许金刚石带隙的大范围调控,为将金刚石应用在微纳器件领域提供了新的可能。我们还实现了单晶金刚石微柱样品的透射电子显微镜原位单轴压缩。原位观察到了单晶金刚石室温下位错主导的塑性形变,解答了长久以来关于金刚石是否存在室温塑性的争议。通过对金刚石微纳柱体内产生的位错网络进行三维重构和原子分辨下的位错芯成像,发现在<111>和<110>取向压缩时普遍产生{100}面内的位错滑移,而在<100>方向压缩时却产生{111}面内的位错滑移。金刚石中位错产生对加载方向表现出很强的依赖关系。由于化学键的强共价性和各向异性,金刚石的位错行为与Cu、Au、Ag和Si等其它面心立方晶体完全不同,改变了有关面心立方晶体位错滑移的传统认知。X-Nano系统已经在新加坡南洋理工大学Suresh院士、香港城市大学吕坚院士等课题组获得应用。以上设备及研究为发展透射电镜三维重构方法做出了一定贡献,创新发展了三维微结构准动态演化实验方法。以上成果作为重要研究进展为中国自然科学基金委网站报道。
其他文献
在哺乳动物卵子发生过程中,活跃的转录和翻译活动为卵母细胞积累了大量的母源m RNA和蛋白,这些母源m RNA的胞质聚腺苷酸化和翻译激活驱动着减数分裂过程的进行。胞质聚腺苷酸化过程由多个蛋白共同调节,主要包括poly(A)聚合酶(PAP:Poly(A)polymerase),剪切和聚腺苷酸化特异性因子(CPSF:Cleavage and polyadenylation specificity fac
神经肽是神经元分泌的细胞间信号分子,在体内充当神经递质,神经调节剂或神经激素,并且在生物发育各个阶段对各种生理功能起重要的调控作用。谷氨酰胺RF-酰胺肽(Pyroglutamine RF-amide peptide,QRFP)是RFamide家族中最新发现的成员,并被鉴定为GPR103内源性配体,GPR103通过与异源三聚体G蛋白结合发挥作用。GPR103及其配体广泛表达于大脑和外周组织中,参与调
DNA的精确复制保障了遗传信息的维持和传递,然而,DNA复制过程持续受到来自细胞内外的复制压力,若没有保护性的压力应答机制,则会导致基因组的不稳定性和肿瘤等重大疾病的发生。在高等真核生物中,复制叉翻转是细胞应对复制压力的保护机制之一。在复制叉翻转过程中,正常的三向复制叉结构会被重塑成Holliday junction结构。有趣的是,我们在电镜下观察到翻转复制叉的翻转臂长度可达数千碱基对,表明复制叉
光计算是以光为信息载体并利用光在传播中的变化来实现信息处理的运算体系。由于其超快的处理速度以及极低的能耗和产热,光计算吸引了大批研究者的兴趣。空间光场模拟运算以光束波前的空间分布为信息载体,具有常规电子运算所不具备的并行性。传统的空间光模拟运算大多使用基于傅里叶光学的4f系统,依赖于具有宏观尺寸的透镜、滤波器等元件。而近年来微纳光学与制备工艺的快速发展,使利用波长甚至亚波长尺度下的器件实现空间模拟
核酶是一类具有催化活性的非编码RNA分子,在细胞内参与多种重要的生命活动,包括t RNA加工、内含子剪切、蛋白质合成等。根据催化机制不同,核酶可被分为两类:金属依赖型核酶和自剪切型核酶。已有研究表明,自剪切型核酶一般采用广义酸碱催化机制进行位点特异性的自剪切。目前,已发现的自剪切型核酶一共有十类,hammerhead、HDV、VS、hairpin、glm S、twister、pistol、twis
近年来基于深度学习的JPEG图像复原方法取得了突破性的进展,但在实际应用中仍然存在诸多掣肘,如多尺度学习模型存在的模型臃肿及复原纹理不自然等问题,双域学习模型难以解决彩色图像复原及动态图像压缩质量复原等问题,以及深度模型所带来的模型参数量过大等问题。本文针对上述问题,分别从感受野模型,双域学习模型,模型压缩等方面对基深度学习的彩色JPEG图像复原算法展开了深入研究:第一,针对多尺度学习模型存在的模
帧插值算法是视频增强领域的核心技术,其主要任务是利用视频相邻帧的图像信息预测出中间帧。帧插值技术既可以用于帧率提升、慢动作视频等直接应用,也可以作为基础核心技术用于视频超分辨率、视频编解码等领域,其关键点在于如何准确地提取运动信息。基于显式运动匹配的帧插值算法在过去得到最为广泛的研究,但是这种方法容易受到诸如遮挡、光照变化、运动模糊等实际因素的干扰。虽然过去近二十年的研究在一定程度上改善了上述问题
随着人脸识别技术的发展,基于人脸的身份认证系统被广泛应用在各个领域,虽然目前的人脸识别技术能够应对不同情况下的检测,但是依然难以区分摄像头前的人脸是真人的还是照片或者视频。因此,兼顾实用性和可靠性的人脸活体检测技术是人脸认证系统的广泛应用的基础,具有重要的研究价值。现有的算法虽然已经取得了不错的检测效果,但是仍然面临诸多难题,如现有方法易受光照的影响;传统的算法以人脸区域作为输入,损失了图像上下文
在空间域光学模拟计算中,信息加载在空间光场的波前上,并利用光场的空间干涉过程来实现信息处理和计算功能。由于充分利用了光场空间干涉过程的并行性,空间域光学模拟计算器件和系统相比于电子器件和系统来说具有速度快、功耗低、带宽大、可扩展性好等优势,可用于科学与工程领域的一系列实际的计算任务。例如,光学空间微分器有望用于实时、大通量的图像处理;空间域光学伊辛机适用于解决计算科学中的组合优化问题。本文研究了用
大脑控制着人体与外界环境的信息交互及认知活动,掌管着感知、思维、记忆等高级活动。对大脑组织功能的探索是近年来研究的热点与挑战。传统研究方法通常使用间接手段观测大脑的活动状态,并且依赖血液动力学响应函数等模型假设或其他数学、统计学假设进行分析研究,对大脑响应过程的研究仍存在局限性;此外,大脑神经元数量众多,扫描采集数据量巨大,常依赖感兴趣脑区、数据降采样等方法缩小数据规模,在全脑尺度对大脑响应活动进