【摘 要】
:
由于飞行环境复杂、飞行包络大、飞行速度快,飞行器导引控制系统存在耦合非线性强、参数与干扰不确定性大、控制约束复杂等问题。这些问题的综合作用给飞行器导引与控制律的设计带来了严峻挑战。本文以耦合及不确定性飞行器为研究对象,基于滑模控制、反演控制和自适应动态面等鲁棒控制技术,深入开展了耦合系统与不确定性系统的基础理论与控制方法研究,并应用到飞行器导引与控制律的设计中。本文的主要研究内容和创新点如下:(1
【基金项目】
:
空军某型号武器项目; 国家自然科学基金项目;
论文部分内容阅读
由于飞行环境复杂、飞行包络大、飞行速度快,飞行器导引控制系统存在耦合非线性强、参数与干扰不确定性大、控制约束复杂等问题。这些问题的综合作用给飞行器导引与控制律的设计带来了严峻挑战。本文以耦合及不确定性飞行器为研究对象,基于滑模控制、反演控制和自适应动态面等鲁棒控制技术,深入开展了耦合系统与不确定性系统的基础理论与控制方法研究,并应用到飞行器导引与控制律的设计中。本文的主要研究内容和创新点如下:(1)研究了不确定性系统的控制,提出了三种非匹配不确定系统的鲁棒增强控制方法。本文对于非匹配不确定性系统,首先,为得到系统状态的精确微分,采用Levant’s精确微分器技术,并结合二阶滑模控制,完成非匹配不确定系统的鲁棒控制器设计。其次,将反演控制结合非线性干扰观测器,完成非匹配不确定系统的鲁棒控制器设计。最后,考虑不确定性是系统状态的函数,提出了一种双层自适应动态面控制方法,其控制效果比现存文献中的单层自适应更好。(2)研究了耦合系统的控制,提出了三种耦合系统的控制方法。梳理了耦合系统的分类,按控制输入与系统状态之间的耦合关系将所研究的耦合系统细分为状态耦合系统和控制输入耦合系统。首先,给出了现存文献中关于状态耦合系统最常见的,基于耦合直接补偿的分布式控制方法;并在此基础上,提出了控制结构更为简洁的,基于耦合直接补偿的向量式控制方法。其次,受启发于Backstepping控制区别反馈线性化的基本思想,提出了耦合及参考输入有效补偿的控制方法。最后,针对一类控制输入耦合的系统,基于矢量运算法则,提出了一种新型矢量控制方法。(3)研究了飞行器的姿态控制,提出了新型飞行器姿态非解耦矢量控制方法。综合考虑飞行器控制系统中可能出现的干扰不确定以及模型矢量耦合,有别于传统姿态控制中将飞行器动力学解耦表达在速度坐标系或弹道坐标系内,本文将速度矢量和角速度矢量动力学建立在体坐标系内,将飞行器速度、攻角和侧滑角,以及滚转角速度的控制问题转化为空间矢量的跟踪问题。首先,考虑有推力情况下,设计飞行器速度与姿态非解耦矢量控制器;其次,考虑无推力情况下,设计飞行器姿态非解耦矢量控制器,为飞行器姿态控制提供新的思路和方法。(4)研究了高阶系统的确定时间收敛控制,提出了一种确定时间收敛的自适应积分滑模控制方法,并设计了一种新型三维非线性导引律。为了解决高阶系统确定时间收敛控制存在的奇异问题,许多学者进行了深入广泛的研究,其主要集中在新型滑模面的设计上。然而,滑模面的设计相对复杂,而且需要进行近似处理。本文针对该奇异问题,结合积分滑模和自适应控制,提出了一种确定时间收敛的自适应积分滑模控制方法,并将其应用到三维导引律的设计中,考虑自动驾驶仪动态特性,设计了一种新型三维非线性导引律。(5)研究了导引与控制一体化,提出了一种全状态耦合的导引与控制一体化设计方法。建立了导弹导引与控制一体化的全状态耦合模型,不再将导引系统与控制系统以及各个通道分离开来,而是把它们完全当做一个整体来对待,实现了导引与控制的完全一体化建模,并设计一种自适应动态面控制器实现全状态耦合导引与控制一体化。
其他文献
精密机械结构是高精尖装备的重要组成部分,装配是结构最终的集成环节。零部件之间的装配结合面是实际接触区域,对精密机械结构的功能和性能影响较大。将具备分形特性的装配结合面称为分形结合面,结合面上的微凸体会产生弹簧阻尼效应,是影响整机动力学性能的关键因素。为了从理论上研究装配工艺对精密机械结构动力学性能的影响规律,提出将分形结合面作为研究切入点,建立分形结合面接触模型;提出机加工表面分形参数求解优化算法
碳纤维增强聚合物基复合材料(CFRP)是一类具有优异力学性能的复合材料,其在航空航天、风电、交通运输及体育器材等领域有着十分广泛的应用。随着CFRP的大量生产及使用,在生产过程中形成的大量CFRP边角料以及服役结束后形成的废料将不可避免地造成环境的污染以及对资源的浪费,因此对CFRP废弃物的处理已成为了CFRP产业链可持续发展亟需解决的重要问题之一。目前,CFRP废弃物的再生利用研究还未能真正实现
碳纤维增强树脂基复合材料具有比强度高、比模量高、疲劳性能好等特性,是实现汽车等结构轻量化的优选材料之一。快速成型技术是碳纤维增强树脂基复合材料大规模应用于汽车结构的客观要求和必然趋势。然而快速成型技术使得复合材料的成型时间短、物理和化学反应急剧,影响着复合材料纤维/基体界面的物理、化学和力学效应,这些效应耦合在一起影响着界面的形成和结构,进而影响着复合材料的界面性能以及湿热老化性能等使用性能。本文
在高超声速飞行器/发动机一体化背景下,进气道设计实质上是在一系列几何约束和气动性能约束条件下进行的。本文针对这一需求,提出了强约束条件下的内转进气道优化设计方法,该方法将流线追踪技术与参数化方法、优化方法相结合,实现了在控制进气道几何参数的同时完成进气道气动性能优化。采用该方法,针对轴对称飞行器形成了不同形式的进气布局设计,对各方案的气动性能进行了分析,并研究了进气布局对吸气式轴对称飞行器气动特性
本文针对高海况天气系统下最为常见的热带气旋,通过将锚系潜标观测的现场海流数据、Argo浮标观测的温盐、生化数据以及卫星遥感数据相结合,研究了由热带气旋引起的中国南海和阿拉伯海的上层海洋响应特征。同时对其过境期间海水的温盐结构和叶绿素浓度的变化特征进行了研究。通过实例分析发现:热带气旋的过境可诱发强烈的垂向混合和埃克曼抽吸,引发明显的上升流现象。这改变了海洋内部的水体分布特征,导致其移动路径附近出现
高超声速巡航飞行器采用吸气式推进方式,可以Ma≥5的速度在临近空间大气内巡航。其高速度能够显著缩短飞行时间,有利于执行时间敏感的远程飞行任务,如紧急运输、高速客机和快速全球打击。由于其采用的吸气式推进系统可以提供远高于火箭发动机的推进效率,该类飞行器理论上具有更大的航程/载荷率潜力,可以作为一种通用的航空运载平台,亦可支撑快速便捷的单/两级入轨。此外,在临近空间内高速飞行的能力对防空提出了严峻的挑
为满足高马赫数飞行器对耐高温、低介电和抗烧蚀天线罩(窗)用透波材料的应用需求,本文以氮化硅(Si3N4)纤维为增强体,以硅溶胶为氧化硅(SiO2)基体先驱体,通过溶胶-凝胶工艺制备了单向氮化硅纤维增强氧化硅(UD Si3N4f/SiO2)复合材料和浅交弯连层连结构氮化硅纤维增强氧化硅(2.5D Si3N4f/SiO2)复合材料。开展了Si3N4纤维的耐温性能、硅溶胶的无机化过程以及氧化硅基体的强韧
石墨烯独特的二维蜂窝状晶格结构造就了其优异的电学、光学和热学特性,在高频电路、超快光电探测和热电子辐射等方面均有重要的应用前景。近年来,纳米尺度的热辐射特性特别是二维材料的热输运性质吸引了很多科学家的研究兴趣。石墨烯具有超高的电流承受能力、极好的导热系数和极低的热容等独特性质,是一个研究微纳尺度热辐射效应的理想平台。论文中,我们通过构建蝴蝶结颈缩结构和位于不同衬底上的石墨烯器件,研究了石墨烯在电场
新型空天高速飞行器在大气层中长时高速飞行,飞行器表面的气动加热环境极其严酷,其热防护系统对耐高温、抗冲刷的防隔热一体化材料提出了迫切需求。SiCO多孔陶瓷的Si-C-O结构赋予材料较高的高温稳定性和力学强度,同时纳米级骨架结构使其具有较优的隔热性能。本文采用SiCO前驱体溶胶分别浸渍聚丙烯腈(PAN)基炭纤维毡和炭纤维增强炭气凝胶复合材料(C/CA),经过凝胶老化、干燥、裂解得到C/SiCO和C/
高速飞行器是新时代航空航天领域研究的重点,其应用对于加速人类开拓太空、探索宇宙具有重要意义,热防护作为限制高速飞行器进一步提速的关键技术,对高速飞行器的应用及其突破性进展起着至关重要的作用。受到结构和材料的限制,传统的被动热防护和半被动热防护,难以适应未来高马赫、长时间、可重复的飞行条件,因此必须发展更加先进有效的主动热防护技术来满足未来的飞行任务,其中,通过流场控制而减小气动加热的主动热防护方法