正线性算子逼近定理与神经网络的稳定性

来源 :复旦大学 | 被引量 : 0次 | 上传用户:anyok1979
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
该文研究了正线性算子的点态逼近定理和神经网络全局收敛条件两方面的内容.一、正线性算子的点态逼近定理.研究了Bernstein-Durrmeyer算子r阶线性组合的逼近正逆定理,得到1-1/r≤λ≤1和0<α<2r/2-λ时的逼近正逆定理.研究了Szasz算子r阶线性组合的带权同时逼近正逆定理,得到0≤λ≤1和0<α<2r/2-λ时的逼近正逆定理.并指出α≥2r/2-λ时此等价定理不成立.不仅推广了上面的结果,而且推广了带权逼近和同时逼近的结果.二、神经网络的稳定性.研究了Hopfield神经网络平衡点的存在唯一性和全局稳定性和全局指数稳定性.推广了已有的结果.
其他文献
特征值问题的提出,看似一个简单的问题,其实不然。尽管其基本理论多年来已成为人们所熟知,然而欲快速有效地求其解,就会遇到各种挑战性问题。 本文在前人的基础上,提出了一种新
本论文主要讨论了图论中的n-因子-临界性以及n-可扩性。在第一章中,我们证明了如下结论:设图G是阶为p的简单连通图,n为小于p的非负整数并且p≡n(mod2),如果对G中任意一对距离为2
设C(m×n)表示复数域C上所有m×n阶矩阵构成的集合,假设A∈C(m×n)??,使得rank(Ak)=rank(A(k+1))成立,那么这个最小非负整数k称为A的指标,记作Ind(A)=k.设A∈(m×n), Ind(A)=k,
该文主要讨论了抽象空间中向量最优问题的一些理论,以及求解一般二次规划问题的一种新算法.文章分别在线性空间和线性拓扑空间中给出次似凸向量值映射的定义,在线性空间中给
该文主要分为二部分,分别讨论了半参数回归模型,随机删失半参数回归模型的大样本的性质.第一部分主要讨论了固定设计下半参数回归模型yi=xβ+g(t)+ε,i=1,2,…,n.综合最小二
设{x_n,n≥1}为同分布样本序列,f(x)为X_1的概率密度函数,基于样本X_1,…,X_n,1969年WolvertonandWagner([1])提出f(x)的递归型核估计f_n(x)=1/nsumfromj=1ton(1/(h_j)K((x-X_j)/h_
该文研究环R上的一种图结构.将环R中的元素看作一个图的顶点,N(R)为环R的幂零元的集合,两顶点x,y之间有边相连当且仅当xy∈N(R).在这种图结构下,R可以看作一个(简单)图,而且
随着现代化和信息化的不断发展,人们对现代控制系统中性能指标要求也随之越来越高,正常的线性系统逐渐不能满足当前工业信息化的发展了,因而出现了很多衍生的线性控制系统,如
近来,越来越多的具变指数增长的非线性问题,例如电流变流体模型,出现在自然科学及工程技术当中。这使得在偏微分方程的研究中,经典的Lebesgue和Sobolev空间表现出其局限性。所以,
在流体力学和工程计算中有这样一类问题,求解区域中物理有大的间断或求解区域有活动的边界(包括激波、自由面、物质界面).如气动力学的激波,流体流动与空气的交界面,结晶、凝