论文部分内容阅读
在人们对电子信息产品性能需求急剧增加的情况下,电子信息产品向高度集成、多功能、小尺寸和高可靠性方向不断发展。而这些需求都需要依赖印制电路板实现,从而推动印制电路板的设计和制造也要向更高互连密度的方向发展。因此,本文在有机物表面构造金属点作为绝缘基板金属化的种子层,通过化学镀或直接电镀技术在种子层上形成导电图形,该金属图形具有优良导电性能、厚度均匀且与基板结合牢固,可应用于印制电路板高可靠性电子线路制作,为高密度互连印制电路板制造提出一种新的途径,在实际生产应用中取得较好效果。传统化学镀铜工艺使用贵金属作为种子层,从而造成生产成本高。而且该过程中贵金属只是吸附于基板表面,因此沉积铜层与基板易分离。为了解决这些问题,提出一种由铜离子和环氧树脂组成的新型复合溶液。通过硼氢化钠溶液处理复合溶液的固化物,将这种复合溶液中的铜离子还原为铜单质,使其作为绝缘基板上的种子层,诱导绝缘基板形成导电图形。由于溶液中有环氧树脂的存在,与绝缘的环氧树脂基板之间具有良好的兼容性,提高了图形与基板之间的结合力,因此形成的铜镀层与基板之间具有良好的结合力,不易发生铜层的脱落,保证导电图形的可靠性。另外经过多种测试分析了乙酰丙酮铜与环氧树脂形成的复合物材料的化学和物理特性,并结合微观形貌观察,确定含40%乙酰丙酮铜的复合溶液在经过处理后,形成的化学镀铜层效果最佳,对应沉积铜速率为19.4μm/h。这种方法能应用于PCBs实际制造中。但在传统化学镀中使用大量甲醛作为还原剂和消耗大量乙二胺四乙酸作为络合剂使得环境污染严重,且这种方法沉积铜速率缓慢,因此提出导电聚合物作为绝缘基板的非金属种子层直接电沉积铜形成导电图形,代替化学镀铜技术。首先通过简单的化学氧化聚合方法在一端含有压延铜的环氧基板表面形成一层导电聚噻吩,然后直接将基板放入哈林槽中进行电镀,最终在导电聚合物上形成性能优良的导电铜层。该方法的电沉积铜速率快,能达到71.4μm/h,且形成的铜层与基板之间结合力良好,为PCBs制造提供了一种快速、高效的新方法。在聚噻吩作为种子层诱导环氧基板直接电沉积金属铜实验中发现聚噻吩直接电沉积铜技术不能用于完全绝缘的基板上,故此引入合成简单,成本低并且在强酸性电镀铜溶液中不易溶解的纳米镍颗粒作为金属核,将其涂覆在聚噻吩表面,然后进行电镀铜,最终在绝缘基板上形成了导电铜层。这种方法形成的铜层致密,表面光亮,不易与基板脱落,且对应的沉积铜速率为14.55μm/h。另外通过扫描电镜、能谱分析以及元素分布等测试进一步研究了纳米镍颗粒在具有聚噻吩的绝缘基板直接电镀过程中的作用,为其他金属纳米颗粒在绝缘基板的导电聚合物直接电镀中的应用提供参考。纳米镍颗粒的引入不仅使绝缘基板上的聚噻吩能直接电镀,而且还增加了聚噻吩的导电性,从而能有效地提高聚噻吩表面形成铜层的速率,因此将其应用于高厚径比通孔的金属化和微小盲孔的填充。通过不同尺寸通孔的金属化,由通孔深镀能力的对比,证实纳米镍颗粒在通孔金属化过程中能增加孔内的镀铜层,提高了通孔的深镀能力。并且通过热冲击实验证明了有纳米镍颗粒情况下形成的孔内镀铜层与基板有较强的结合力,不会在热胀冷缩的情况下发生铜层脱落。除此之外,纳米镍颗粒分散在盲孔孔壁的聚噻吩表面也能在电镀时提高盲孔填充率。这项研究能应用于通孔和盲孔的金属化,实现孔径小、孔密度高的印制电路板制备要求,以形成高密度互连结构。为了防止涂敷的纳米金属与聚合物之间发生分离从而阻碍聚噻吩直接电镀的进行,本文提出了一种在绝缘基板表面形成含金属的聚噻吩复合导电膜的方法,此时电阻最小为1.28 kΩ。该方法的关键在于使用了高锰酸钾和氯化铜的酸性混合溶液作为混合氧化试剂,使其对基板进行氧化处理,能在基板表面形成一层含有二氧化锰和铜离子的氧化层。二氧化锰能在单体溶液中促进聚噻吩快速形成,同时铜离子能为铜单质的形成提供铜源。另外,通过电化学中的线性扫描测试,验证了含铜的导电聚噻吩复合膜具有良好的电化学活性,能在电镀铜液中发生电沉积铜反应。除此之外,还探究了含铜的导电聚噻吩复合膜作为一种新颖的种子层在电镀铜反应中的一些特性,证实镀液中铜离子与添加剂含量以及初始电压对含铜的导电聚噻吩复合膜电镀时的沉积铜速率都有影响。另外,这种复合物膜也能在纺织物上形成电镀图形,而且导电的纺织物拉伸至50%时,仍然保持导电性,这为柔性和可穿戴电子元器件的制造提供了一种方法。