基于生成对抗网络的视网膜OCT图像去噪与超分辨率方法研究

来源 :四川大学 | 被引量 : 0次 | 上传用户:fuyaomama
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
光相干层析扫描技术(Optical Coherence Tomography,OCT)因具有非侵入性和微米级分辨率的优点而成为眼科疾病诊断的重要工具。然而,基于OCT技术的诊断存在两个无法避免的问题。首先,采集的OCT图像中存在大量斑点噪声;其次,在采集过程中,为了尽可能避免数据丢失,通常采用低空间采样率进行采样,但由此得到的OCT图像具有较低的分辨率。因此,当前临床上需要可行有效、并能同时实现OCT图像去噪和图像超分辨率的算法。针对OCT图像去噪和图像超分辨率任务,所提算法可分为稀疏表示方法和深度学习方法。稀疏表示方法存在效率低和细节信息丢失等问题,现有深度学习方法存在分层边界不清晰和图像平滑等问题。近年来,生成对抗网络在图像转换任务中取得了优秀的结果,OCT图像去噪与超分辨率同样可视为图像域的转换任务,因而本文主提出了两种基于生成对抗网络的方法,具体介绍如下:(1)提出了一种反投影注意力网络的方法。该方法将图像去噪与超分辨率视为图像域的转换任务,生成器在判别器的对抗和感知损失的约束下,生成更高质量的高分辨率无噪图像。其中,生成器网络中融入了残差学习、反投影学习和注意力机制,残差学习用于提取低分辨率图像的深层次特征信息,反投影学习低分辨率图像和高分辨率图像间的相互依赖关系,注意力机制对高分辨率特征进行注意力资源的再分配。判别器中引入了相对平均判别器的思想,通过计算相对真实和虚假的概率来代替绝对概率。实验结果表明该方法在去除噪声和超分辨率的同时可以重建出具有清晰结构的图像。(2)提出了一种基于生成对抗网络的无监督方法。由于监督方法在训练过程中需要严格对齐的数据,并且现有基于循环生成对抗网络(Cycle-Consistent Adversarial Networks,CycleGAN)的无监督方法仅能实现图像风格的迁移,即生成图像质量较差。针对该问题本文提出了一种新的无监督方法,该方法将OCT图像去噪和图像超分辨率视为一个两阶段问题,通过原始的CycleGAN网络和额外的约束网络来逐步实现这一任务。即CycleGAN网络实现图像的去噪过程,额外的约束网络实现LR无噪图像的超分辨率过程。在CycleGAN方法中通过循环一致性损失和对抗损失来指导该模型的训练。在额外引入的网络中,通过重建损失和对抗损失来对其进行约束。从实验结果来看,该方法在主观视觉上较优于对比的监督方法和无监督方法,在客观指标上略差于监督方法。最后通过公开的OCT图像层次分割软件对重建结果进行自动分割,进一步证明了本文所提方法的有效性。
其他文献
低空监视雷达是基于三坐标的一次监视雷达。雷达有效工作范围为50km,搜索高度最高为3km,主要是对近低空的低小慢目标进行跟踪。低空监视雷达工作环境复杂,易受气象条件、地杂波、多役干扰等因素的影响。为解决在杂波密集情况下低空监视雷达目标跟踪算法性能效果不佳的问题,本文提出了基于机器学习的航迹起始分类算法和基于模糊聚类的联合概率数据关联算法,以提高目标跟踪的正确率,并满足实时性要求。基于机器学习的航迹
飞行冲突识别与调配活动在实际管制过程的占比较大,对该活动事项展开研究并研发出相应的辅助决策系统可以减轻人员的工作负荷和增强空管的服务能力。本文提出了基于神经网络的冲突识别与调配模型,通过学习历史数据获得管制员的管制策略,然后提供可被信赖的飞行识别与调配功能并完成相应系统模块程序的编写。探究相关的理论知识,该技术理论的研究往往结合航空器的运动学建立相应的数学模型,冲突识别尚可获得相对良好的效果但给出
CT技术因其成像清晰、扫描速度快等特点在临床筛查、病情追踪医学领域得到了广泛应用。CT技术的出现为医生诊断病情提供了有效的参考,但近来有研究表明CT拍摄时产生的辐射会对病人的身体健康带来很大的隐患。因此人们也越来越重视CT技术中的X光带来的危害。研究人员尝试降低辐射剂量来减少对病人身体的危害,但实验结果表明,降低辐射剂量将直接影响图像质量的好坏,因为会导致获取的图像产生噪声和伪影,不利于医生对疾病
十三届全国人大四次会议报告显示,2020年检查机关起诉涉嫌犯罪的未成年人的人数高达3.3万人,恶性案件低龄化的犯罪趋势使得国内对于未成年人骨龄鉴定需求有所增多。在国内的司法领域中,骨龄鉴定作为证据在对嫌疑人判刑方面发挥了巨大的作用。目前国内的骨龄鉴定主要依靠人工鉴定,依赖骨龄计分法对手骨发育进行等级评分得到预测骨龄,其缺点是需提前掌握相关知识并需要进行繁琐的操作,对于非专业人员来说是比较高的门槛,
近年来,民用航空产业进入到了一个高速发展期,未来的空中交通将越来越密集,空中交通管理正成为一个日益重要和复杂的研究领域。4D航迹预测是航空运输系统的核心要素,旨在提高空中交通的运行能力和可预测性,精确的航迹预测可以有效解决空域资源紧张的问题,并在冲突探测与解脱、协同管制等领域具有重要意义。随着数据挖掘与人工智能技术的飞速发展,越来越多的历史航迹数据可用于空域态势分析和监控,将其有效运用于智能空管系
时间性反走样算法具有效率优势,是近年来被广泛应用的实时反走样算法之一。该算法通过将采样点平摊至历史多帧及复用历史数据的方式来实现实时反走样。在时域信息采样充分且历史数据可复用的前提下,该算法能取得和超采样反走样算法类似的效果。然而在实际应用中,上述条件并不一定完全成立。在历史数据不能被复用的情况下,将产生几何走样及重影等问题。除此之外,为了降低显存成本,该算法使用累积帧来代替历史多帧,这将导致误差
随着现代战争不断向着信息化、智能化的方向发展,飞行器自主机动决策技术作为提升战斗机智能化水平的关键技术,也越来越受到世界各国的关注。现代空战环境复杂、态势瞬息万变,能够准确感知空战环境并生成合理决策的自主机动决策方法技术是近几年来军事技术研究的重点。近年来,随着人工智能技术研究的不断深入,深度强化学习方法在多种决策问题的解决上取得了一定的突破,为飞行器机动决策问题的解决提供了新的思路。本文以三维空
终端区是空中交通管制的重要部分,其任务是引导飞行器起飞、降落和有序进离场,随着空域内飞行器数量的增加,终端区空中流量增大,容易导致飞行冲突,引发空中交通阻塞和航班延误,影响飞行安全,因此研究终端区飞行冲突调配具有重要意义。终端区飞行冲突调配是根据当前飞行器参数,判断未来一段时间内飞行器之间的距离是否会小于安全间隔的规定而导致冲突,并对可能的潜在冲突采取措施避免发生碰撞的过程。本文在现有空中管制技术
在低空监视领域中,小型飞行器的机载设备受制于功率和成本,很难准确播报本机的运动参数,只能通过雷达对其进行主动检测。这类小型飞行器具有的飞行高度低、飞行速度慢和雷达反射面积小等特点,极大增加了雷达目标检测的难度。日益增多的小型飞行器造成了许多空管事故,因此,提升雷达对低空空域小目标的检测能力,成为近年来空管领域需要迫切解决的问题。本文针对基于深度学习的雷达目标检测算法展开了深入研究,根据低空目标的特
数字图像一直在信息的传递过程中扮演着重要的角色。如今多媒体信息爆炸的时代充斥了图像和视频等数字信息,同时也存在着包含大量模糊人脸图像的问题。无论是人们日常分享生活、传递信息还是在科研领域中如智能安防、目标或人脸检测或者自动驾驶等计算机视觉任务都需要依托大量清晰的图像,因此将模糊图像重新变得清晰是一个急切且广泛的需求。在图像处理领域中,将图像的模糊主要分为了高斯、散焦、运动、衍射等类型,其中由运动所