论文部分内容阅读
甘草是一种极富营养和疗效的植物药,通常被广泛用作食品和药品等。到目前为止,从甘草中已分离出将近400种化学成分,包括大约300种黄酮类化合物和20种以上的三萜类化合物。甘草黄酮类化合物具有抗氧化、抗炎、抗肿瘤和皮肤美白等药理活性,但是由于其水溶性差,生物利用度低,很大地限制了甘草黄酮类化合物在食品和药品等领域中的应用。目前针对甘草黄酮的研究主要集中在药理活性和提取纯化方面,增溶研究方面较少,并且其提取纯化采用的是传统的醇提法、水提法和大孔吸附树脂法等,普遍存在成本高,耗时长,残留试剂有毒等缺点。为了更好地开发和利用甘草黄酮,本研究对乌拉尔甘草根中的甘草黄酮进行高效绿色提取,进一步分离纯化得到高纯度的甘草黄酮,并且通过反溶剂重结晶法制备了甘草黄酮纳米粒子,目的是改善其水溶性和生物利用度。研究结果如下:1、本研究以十二烷基硫酸钠为表面活性剂,采用超声微波辅助胶束提取法对甘草黄酮进行提取,通过单因素和响应面法对提取工艺参数进行优化,以甘草黄酮提取率为指标,最终得到的最优工艺参数为:十二烷基硫酸钠的质量分数为2%,液料比为21,微波功率为832 W,时间为10 min,在此最优条件下,甘草黄酮的提取率达到3.65%。采用80%乙醇热回流法对甘草黄酮重复提取3次,其提取率达到3.71%。2、采用乙酸乙酯对提取液进行预处理,重复萃取3次,合并乙酸乙酯萃取液,干燥后获得甘草黄酮粗品,纯度为36.47%,回收率为92.80%,采用液相色谱法对甘草黄酮粗品进行测定,其中刺甘草查尔酮和异甘草素的含量分别为0.55%和0.56%。采用金属络合法对黄酮粗品进行纯化,通过单因素法对工艺参数进行优化,得到的最优工艺参数为:甘草黄酮浓度为2 mg/mL,甘草黄酮与氯化钙的质量比为1:0.3,溶液pH为10。在此最优条件下获得甘草黄酮粗品,纯度为63.56%,回收率为77.27%,通过液相色谱法测得其中刺甘草查尔酮和异甘草素的含量分别为0.81%和1.46%。进一步采用反溶剂重结晶法对甘草黄酮粗品进行纯化,通过单因素和响应面法对工艺参数进行优化,最终得到的最优工艺参数为:时间为1 min,温度为27℃,反溶剂与溶剂比为 12,甘草黄酮浓度为 82 mg/mL,在此最优条件下,甘草黄酮的纯度为90.32%,回收率为88.98%,通过液相色谱法测得其中刺甘草查尔酮和异甘草素的含量分别为1.12%和2.42%。3、采用反溶剂重结晶法制备了甘草黄酮纳米混悬液,考察不同因素对甘草黄酮纳米混悬液粒径的影响,通过单因素实验方法对工艺参数进行优化,得到的最优工艺参数为:泊洛沙姆188含量为0.3%,沉积温度为40℃,搅拌速度为750 r/min,滴加速度为5 mL/min,反溶剂与溶剂的体积比12,沉积时间为20 min,甘草黄酮浓度为50 mg/mL。在此最优条件下,甘草黄酮纳米混悬液的粒径为95 nm,冻干后甘草黄酮纳米粒子粉体的粒径为108.2 nm。通过扫描电镜对甘草黄酮原药与甘草黄酮纳米粒子进行形态表征,与原药相比,甘草黄酮纳米粒子呈现出均匀的球形形态,且粒径远远小于原药的41.8μm。通过XRD,TG,DSC分析可以得出,甘草黄酮纳米粒子没有形成新的晶体,基本以一种无定形态的方式存在。对甘草黄酮纳米粒子进行溶剂残留的检测,最终得到甘草黄酮纳米粒子中的甲醇含量为22.94 ppm,残留甲醇的含量低于ICH对Ⅱ类溶剂甲醇的限量3000 ppm,符合ICH指南,可用于制药。4、测定了甘草黄酮原药和甘草黄酮-羟丙基-β-环糊精(1:0,1:1,1:2,1:3,1:4,1:5,1:6,1:7,1:8,1:9)纳米粒子冻干粉中刺甘草查尔酮、甘草查尔酮A和总黄酮在水中的饱和溶解度,甘草黄酮原药中的刺甘草查尔酮和甘草查尔酮A的饱和溶解度为0.0198 mg/mL,0.0021 mg/mL;甘草黄酮-羟丙基-β-环糊精(1:0,1:1,1:2,1:3,1:4,1:5,1:6,1:7,1:8,1:9)纳米粒子冻干粉中刺甘草查尔酮的饱和溶解度为0.14,0.46,0.63,0.70,0.79,0.73,0.76,0.77,0.72,0.69 mg/mL,甘草黄酮-羟丙基-β-环糊精(1:0,1:1,1:2,1:3,1:4,1:5,1:6,1:7,1:8,1:9)纳米粒子冻干粉中甘草查尔酮A的饱和溶解度为0.82,1.61,1.70,1.73,1.78,1.77,1.77,1.80,1.75,1.76 mg/mL,实验结果得出冻干的最优条件为:甘草黄酮与羟丙基-β-环糊精的比为1:4。甘草黄酮原药中总黄酮的饱和溶解度为 8.03 mg/mL,甘草黄酮-羟丙基-β-环糊精(1:0,1:1,1:2,1:3,1:4,1:5,1:6,1:7,1:8,1:9)纳米粒子冻干粉中总黄酮的饱和溶解度为30,170.23,181.21,183.23,200.25,197.34,196.78,198.26,186.23,187.23 mg/mL,实验结果得出冻干的最优条件为:甘草黄酮与羟丙基-β-环糊精的比为1:4,与上述实验结果一致,在此最优冻干条件下,甘草黄酮纳米粒子冻干粉中总黄酮在水中的饱和溶解度是原药的25倍。然后测定了甘草黄酮原药和甘草黄酮纳米粒子冻干粉中刺甘草查尔酮、甘草查尔酮A和总黄酮在人工肠液与人工胃液中的体外溶出率,在720 min时,甘草黄酮纳米粒子冻干粉中刺甘草查尔酮与甘草查尔酮A在人工肠液中的最大溶出率分别为51.33%和73.44%,是原药中刺甘草查尔酮与甘草查尔酮A的4.09倍和69.66倍;在720 min时,甘草黄酮纳米粒子冻干粉中刺甘草查尔酮与甘草查尔酮A在人工胃液中的最大溶出率分别为5 6.84%和97.46%,是原药中刺甘草查尔酮与甘草查尔酮A的2.63倍和8.92倍。在720 min时,甘草黄酮纳米粒子冻干粉中总黄酮在人工肠液中的最大溶出率为75.82%,是原药中总黄酮的9.63倍;在720 min时,甘草黄酮纳米粒子冻干粉中总黄酮在人工胃液中的最大溶出率为60.65%,是原药中总黄酮的11.66倍。因此该实验结果说明制备的甘草黄酮纳米粒子展现出了更高的溶出率,大大改善了甘草黄酮的水溶性。5、测定了甘草黄酮原药与甘草黄酮纳米粒子在大鼠体内的抗氧化性,当剂量为300 mg/kg,灌胃在28天时,甘草黄酮原药与甘草黄酮纳米粒子的MDA含量为2.18 nmol/mL和1.12 nmol/mL;当剂量为300 mg/kg,灌胃在14天时,甘草黄酮原药与甘草黄酮纳米粒子的CAT活性为6.09 U/mL和6.96 U/mL;当剂量为100 mg/kg,灌胃在28天时,甘草黄酮原药与甘草黄酮纳米粒子的GSH-PX活性为8.36 U/mg和9.39 U/mg;当剂量为300 mg/kg,灌胃在28天时,甘草黄酮原药与甘草黄酮纳米粒子的T-SOD活性为370.76 U/mL和392.85 U/mL;实验结果表明,相比甘草黄酮原药,甘草黄酮纳米粒子具有更强的抗氧化活性。6、测定了甘草黄酮原药与甘草黄酮纳米粒子冻干粉中刺甘草查尔酮与甘草查尔酮A在大鼠体内的生物利用度,实验结果为:在灌胃60 min之后,甘草黄酮原药中刺甘草查尔酮与甘草查尔酮A的最大血浆药物浓度达到4.98 ng/mL和24.72 ng/mL;在灌胃90 min之后甘草黄酮纳米粒子中刺甘草查尔酮与甘草查尔酮A的最大血浆药物浓度达到67.62 ng/mL和242.94 ng/mL。甘草黄酮纳米粒子中刺甘草查尔酮与甘草查尔酮A的生物利用度是原药中刺甘草查尔酮与甘草查尔酮A的10.63倍与6.54倍。7、测定了甘草黄酮纳米粒子在大鼠体内的毒性实验,在实验期间所有组的大鼠未表现出异常行为,由肝脏的组织病理学观察结果知,与对照组相比,在组织结构与细胞中没有发现明显的由药物引起的病理变化,实验结果表明在剂量达到800 mg/kg时,甘草黄酮纳米粒子对SD大鼠没有毒性,表现出良好的生物安全性。