利用部分迫近点算法求解系数估计问题

来源 :大连理工大学 | 被引量 : 0次 | 上传用户:dvdwen
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文考虑了一类来自多元线性回归的维数减少和系数估计问题.经过转化,该问题可以变为一类带核范数约束的矩阵优化问题,然后利用非精确的部分迫近点算法对此问题进行求解.在算法的每一次迭代中,我们需要求解一个半光滑的子问题.我们采用基于牛顿迭代的共轭梯度算法来求解子问题,并给出收敛性分析.最后,数值实验部分,我们给出了部分迫近点算法的数值结果,并跟VNS方法(variantofNesterovssmooth)和内点法进行比较,数值结果表明,三种方法中,内点法只能对维数较小的问题进行求解,且运行速度上明显慢于另外两种方法;而部分迫近点算法和VNS算法相比更为有效.
其他文献
数学物理逆问题是现代数学中的一个热点研究领域,研究它的难点在于它的不适定性.在本文中,我们考虑一类经典的逆问题,即热传导问题的侧边值问题(SHE),具体的我们考虑:{uxx=ut,x≥0
全息数据存储系统很久已有大存储容量、短存取时间和高数据传输率的希望。诸如铌酸锂(LiNbO3)之类光折变材料可在适中激光功率下用于全息图记录(图1)。图1 数字全息记录光装
基因芯片可以快速检测成千上万条基因,从而对生物细胞基因水平做出一个全面的认识。近年来,越来越多学者将基因芯片技术应用到肿瘤与癌症的研究中。针对维数高、样本数量少的微
对于整数r,如下定义pr(n):  ∞∑n=0pr(n)qn=∞Πn=1(1-qn)r.研究pr(n)是有意义的.例如,当r=-1时,我们得到经典的拆分恒等式  ∞∑n=0p-1(n)qn=∞Πn1/1-qn.当r=1时,我们得到Euler
自Stefan在十九世纪末对移动边界问题开始研究以来,经过了一百多年各国学者的共同努力,已经取得了许多成果,但是它的应用潜力还是无限的,例如对新型材料的开发和研究.在本篇论文
自从1832年法拉第第一次提出了磁流体动力学(Magnetohydro Dynamic,MHD)问题以来,磁流体动力学的理论研究被国内外诸多学者所研究[1-49]。作为流体力学一个重要的分支,磁流体动
系统发生学是一门研究生物进化规律和物种间遗传关系的学科,利用系统演化树来描述自然界中物种之间遗传关系,得到了较为广泛的关注和研究.用图论的方法研究系统发生学的问题,一
间断有限元方法集合了高分辨率有限差分方法和有限体积方法的优点,它是采用完全分片的多项式空间对近似解和试验函数进行空间离散,使用Runge-kutta方法进行时间分解的有限元方
本篇硕士毕业论文由五部分构成.第一章为预备知识,简要介绍了文中所讨论的Sobolev方程在数学物理问题中的实际应用,混合有限体积元的研究背景及其应用。第二章主要引入了扩展混
本文,我们考虑下面平均场倒向随机微分方程。Yt=ξ+∫TtE[f(s,Ys,Ys,Zs)]ds-∫TtZsdWs,0≤t≤T.  2009年,Buckdahn,Djehiche,Li和Peng引入一种新型的倒向随机微分方程,他们将之命名为