【摘 要】
:
能源危机和环境污染是阻碍社会经济高速发展的首要问题,可再生能源的利用是解决问题的重要手段。然而可再生能源输出功率具有随机性和间歇性,为了提升系统稳定性,以微电网形式将分布式发电单元接入主网是一种有效的方式。三相逆变器并联环流抑制和功率均分控制策略是确保微电网高效稳定运行的关键技术挑战,本文以微电网中的三相逆变器为基础,重点对其并联运行环流抑制及功率均分控制策略进行研究。首先,对三相逆变器进行了数学
论文部分内容阅读
能源危机和环境污染是阻碍社会经济高速发展的首要问题,可再生能源的利用是解决问题的重要手段。然而可再生能源输出功率具有随机性和间歇性,为了提升系统稳定性,以微电网形式将分布式发电单元接入主网是一种有效的方式。三相逆变器并联环流抑制和功率均分控制策略是确保微电网高效稳定运行的关键技术挑战,本文以微电网中的三相逆变器为基础,重点对其并联运行环流抑制及功率均分控制策略进行研究。首先,对三相逆变器进行了数学建模并设计了主电路参数,给出了孤岛运行模式下三相逆变器的控制策略,并且设计了电流内环和电压外环比例积分调节器,并利用仿真对单台三相逆变器双闭环控制模型进行了研究。其次,建立了三相逆变器并联系统的数学模型,分析了并联系统环流产生机理并通过下垂控制的基本原理给出了并联系统的传统下垂控制策略。为了减弱线路阻抗不一致造成的环流问题,提出了基于附加虚拟阻抗的下垂控制策略,分析了电压电流双闭环控制参数以及虚拟阻抗对三相逆变器输出阻抗的影响。为了避免加入虚拟阻抗后带来的输出电压跌落及无功均分不彻底的问题,进一步提出了无功功率-电压改进下垂控制。最后,通过Matlab/Simulink仿真软件及实验平台对附加虚拟阻抗的传统下垂控制和改进下垂控制进行了仿真及实验研究,证明了所提控制策略的有效性。
其他文献
在各种各样机械设备中,需要将冲击力在液压系统中转化为油液压力,即机械能与液压能转化时,需要液压传动技术。随着工业的发展,人们对工作安全、可靠和效率的追求越来越高,那么传统的液压传动装置不能快速实现液压系统安全、可靠和高效闭锁和开启需求。因此找到和掌握一种快速闭锁和开启的机械产品已经迫在眉睫,成为大家关注的焦点。快速液压制动缸在液压系统中,能够实现一个工作机构需要做多次一维快速往复运动。因此,研究和
随着社会的高速发展,国家的日益富强,国内的高层住宅小区日益增多,市政管网的水压无法满足高层住户的供水需求,作为保障高层住宅小区供水压力需求的二次供水设备自然是必不可少的。而一些老旧小区的二次供水设备随着时间的侵蚀以及用户的需求,也处于需要更换设备的状态。所以一款符合用户要求的,有竞争力的二次供水设备在国内是拥有广阔市场的。研究设计新型伺服直驱式二次供水设备的控制系统,通过下位数据采集实时监测供水管
伴随我国经济高速发展,钢结构建筑渐渐取缔混凝土建筑主导地位,成为我国乃至世界建筑业发展的主流趋势,钢结构建筑中方矩形管使用量所占比重最大。目前生产方矩形管的成型工艺主要为辊弯成形,辊弯成形中又分为直接成方与先圆后方两种形式。虽然国内外对方矩形管的生产工艺进行了大量研究,但现阶段以冷辊弯成形方式生产大壁厚、大规格、高强度方矩形管仍较为困难,热辊弯成形方式塑性好、易于成形,能有效解决冷辊弯生产过程伴有
履带车辆具有单位接地压力小、地面适应力强等优点,应用广泛于山地、丘陵、谷壑等极端地形环境。六肢腿履带足科考平台是一种在极端地形环境下能够实现爬坡、越壑等动作的新型行走装备,主要由平台系统、6个结构相同的肢腿系统、以及由6台履带车构成的履带行走系统组合而成。带履刺的履带作为履带车的重要运动部件,其抓地能力直接影响履带车的稳态转向性能,因此,有必要研究履刺对于履带行走系统稳态转向性能的影响。本文对六肢
随着我国智能变电站建设容量的不断增加,以及近些年已建好的智能变电站在运维过程中不断地暴露出一些问题,因此需要进一步对智能变电站进行研究改进。目前存在的问题一方面是数据采集系统面对的底层设备的传输协议复杂,现在主要应用的传输协议有RS232、RS485、Can、Profibus等工业现场总线结构,也有基于嵌入式系统的I2C,单总线等各种通讯协议,为此本文提出了一种采用Modbus TCP通讯的方式,
在机车车辆行驶的过程中,机车车轮所激发出来的频率与路基的固有振动频率比较贴近时,就会产生路基共振现象,从而对路基产生破坏,这一现象促进了研究人员开始对路基动力学进行研究。路基动力学所研究的主要内容是路基在车轮反复的荷载作用下(低频振动条件)下路基的动力学特性。因为路基自身的振动频率比较低,轮对和钢轨间激发出的高频振动对路基系统本身来说是比较小的,故针对路基的振动分析可以采用相对灵活的仿真方法进行。
目前,汽车尾气排放是造成环境污染的主要因素,并且随着全球能源的消耗,能源危机日益凸显,因此,亟待寻求新的能源来替代传统能源。纯电动汽车可以在一定程度上缓解化石能源带来的环境污染与能源危机问题。但是由于目前纯电动汽车动力电池的技术瓶颈,造成能量密度不高,使电动汽车的续航里程受到很大的限制,阻碍了纯电动汽车的发展。本文的研究内容就是在保证制动安全的前提下,制定控制策略,利用制动能量回收技术回收车辆在制
当前,可再生能源正在被大力发展以替代传统的化石燃料。目前我国的能源结构还处于不平衡的境地,能源需求量与日俱增而能源供给情况堪忧。与此同时,环境污染等问题也在日益严重,如何加速推动综合利用可再生能源现代化已成为当前我国应对能源危机的一个最佳方案。风光等新能源电力正逐步地渗透到整个我国的电力系统中,但由于它们所具有很强的不确定性难以作为发电主力。而我国水力资源丰富,并且水电具有很好的调峰效应。为了完善
十三五规划以来,我国冶金制造业发展迅速,制造业创新能力有了巨大的提升。绿色、环保成为工业发展新趋势。而镁合金板材作为一种新型材料,在各个行业有着广泛的应用。因此,对镁板的质量要求也不断增高。而且,镁合金板材在制备的过程中,由于各种因素的影响,使镁板出现了波浪、中浪等板型缺陷,所以需要通过对镁合金板材进行矫直,从而获得高质量的镁板以满足各个领域的发展需求。在经典矫直理论中,构建矫直模型中往往忽略了板
随着经济的快速发展与工厂规模的扩大,起重机械在我们日常工作生活当中起到了重要作用。由于起重机械起重量与自身重量的逐渐增加、不同的接触情况,以及循环载荷工况等因素的影响,致使起重机械车轮踏面磨损状况日益严重,严重的磨耗影响着车轮踏面的使用寿命及起重机运行的安全性与平稳性。因此,对轮轨滚动接触踏面损伤的研究具有重要的理论意义与工程应用前景。本文详细的论述了车轮踏面磨损的研究历史与意义,在理论的基础上,