海洋玫瑰杆菌类群细菌分解代谢二甲基巯基丙酸内盐的分子机制及动力学调控机制

来源 :山东大学 | 被引量 : 0次 | 上传用户:shancjb
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
二甲基疏基丙酸内盐(Dimethylsulfoniopropionate,DMSP)是全球硫循环和碳循环的重要载体物质。海洋浮游植物、大型藻类和临海被子植物是DMSP的主要生产者。每年DMSP的产量可以达到109吨。在大洋表面的某些区域,DMSP的产量可以达到碳固定总量的10%。微生物介导的DMSP的分解代谢是全球硫循环和碳循环的重要步骤。海洋玫瑰杆菌类群细菌(Marine Roseobacter Clade,MRC)是分解代谢DMSP的主要微生物类群之一。微生物利用胞内DMSP裂解酶裂解DMSP产生二甲基硫(Dimethyl sulfide,DMS)和丙烯酸(Acrylate)。DMS具有挥发性,是连接海洋硫库和大气硫库的重要媒介。同时,它也是重要的影响气候的小分子物质,可以通过影响地球对太阳辐射的反射率影响全球气候环境。而丙烯酸则是重要的海洋碳源,很多微生物可以利用其作为唯一碳源生长。研究海洋细菌对DMSP的分解代谢对于更好认识全球硫循环和碳循环以及微生物代谢过程对环境的影响具有重要意义。在本论文中,我们以海洋玫瑰杆菌类群细菌为研究对象,主要从DMSP裂解酶裂解DMSP的分子机制、DMSP裂解酶的进化机制、DMSP裂解产物丙烯酸胞内代谢的分子机制以及DMSP分解代谢的动力学调控机制等几个方面进行了研究。1.海洋玫瑰杆菌类群细菌裂解DMSP产生DMS的分子机制每年通过微生物的DMSP裂解酶裂解DMSP产生的DMS可以达到约3亿吨。DMSP裂解酶种类丰富,到目前为止一共发现了 8种不同的DMSP裂解酶。但DMSP裂解酶裂解DMSP的分子机制研究较少。DddP是海洋中最丰富的DMSP裂解酶之一,主要来自于海洋玫瑰杆菌类群细菌。在本论文中,我们以来自Ruegeria lacuscaerulensis ITI1157 的 DMSP 裂解酶 RlDddP 为研究对象,研究了 DddP催化DMSP裂解的分子机制。我们首先利用RT-qPCR技术和酶活检测实验手段验证了 RlDddP的功能。实验结果表明RldddP基因能够被DMSP诱导上调表达,重组表达纯化的RlDddP具有显著的DMSP裂解酶活性。然后我们检测了 RlDddP的酶学性质。RlDddP的最适pH为6.0,最适温度为60℃,Km值为 17.1 ±0.98mM。邻菲罗啉(o-phenanthroline,o-P)和 2,2-联吡啶(2,2-bipyridine)能够显著抑制RlDddP的活性,而典型的金属螯合剂EDTA和EGTA则对RlDddP的活性无显著影响。然后,我们分别解析了RlDddP结合底物类似物吗啉乙磺酸(MES),RlDddP结合产物类似物磷酸根,RlDddP突变体Y366A结合产物丙烯酸,RlDddP突变体D377A结合产物丙烯酸的晶体结构。RlDddP在溶液中以二体形式存在。RlDddP单体有两个结构域,两个结构域之间的夹角约90°,是典型的"pitta-bread"结构。每个RlDddP二体含有两个催化中心,每个催化中心螯合两个Fe3+作为金属离子辅基,并有10个保守的氨基酸。其中377位的天冬氨酸位于DMSP的β-C附近,很可能是催化过程中的亲核攻击碱。突变验证结果表明突变377位的天冬氨酸会导致RlDddP酶活的丧失,验证了该氨基酸为攻击碱的推断。接着,我们对已解析的四个结构进行了叠合分析,发现RlDddP的二铁离子辅基中的一个Fe3+在催化过程中存在"ion-shift"现象。Fe3+的移动有助于DMSP的结合并且增加了 DMSP的α-H的酸性,是RlDddP实现催化功能的关键一步。最后,在综合实验结果的基础上,我们提出了RlDddP裂解DMSP的分子机制。本研究对更好的认识微生物裂解DMSP产生丙烯酸释放DMS的过程具有重要意义。2.M24金属蛋白酶来源的DMSP裂解酶DddP的进化机制序列和基因组分析认为DMSP代谢是在其它已存在的代谢途径的基础上进化产生的。DMSP裂解酶种类丰富,已发现的DMSP裂解酶分属于不同的家族。DMSP裂解酶的多样性暗示着DMSP裂解酶可能具有不同的进化来源。在本论文中,我们以来源于R.laacuscaerulensis ITI1157的RlDddP为例,研究了 DddP从金属蛋白酶进化为DMSP裂解酶的机制。因为序列分析显示DddP属于M24金属蛋白酶家族,所以我们首先利用RT-qPCR技术和酶活检测实验手段检测了RlDddP的蛋白酶功能。研究发现RldddP基因不能被短肽和酪蛋白诱导,重组表达纯化的RlDddP也检测不到蛋白酶活性,说明RlDddP从金属蛋白酶进化为DMSP裂解酶后完全丧失了蛋白酶功能。然后,我们分别对DddP的蛋白全长及N端结构域进行了系统发生分析。研究发现,DddP在M24金属蛋白酶家族中形成了一个独立的分支,而且拥有一个不同于其他M24金属蛋白酶的全新的N端结构域。结构分析结果显示全新的N端结构域使得RlDddP形成了 一个紧密的二体结构,从而使得RlDddP的底物入口仅能允许DMSP进入而不允许短肽进入。接着,我们对RlDddP与M24金属蛋白酶极为相似的C端结构域进行了结构叠合分析。结果显示在金属蛋白酶中起稳定反应中间态作用的氨基酸突变成了DMSP裂解酶中的关键的催化碱。催化中心关键氨基酸的突变导致了RlDddP蛋白酶催化能力的丧失和DMSP裂解酶催化能力的形成。最后,在综合N端结构域和C端结构域研究结果的基础上,我们提出了 DddP从金属蛋白酶进化为DMSP裂解酶的机制。这一研究有助于更好地认识DMSP裂解酶的进化机制。3.海洋玫瑰杆菌类群细菌胞内代谢丙烯酸的分子机制丙烯酸是重要的海洋微生物碳源,同时丙烯酸及其代谢产物丙烯酰辅酶A具有很高的细胞毒性,丙烯酸需要在胞内实现快速代谢从而避免对微生物的生存造成影响。但是到目前为止,丙烯酸代谢的分子机制尚不清楚。在本论文中,我们以代谢DMSP的主要类群海洋玫瑰杆菌类群细菌为研究对象,研究了 DMSP代谢菌株胞内代谢丙烯酸的分子机制。首先,我们验证了该类群胞内代谢丙烯酸的代谢途径。研究发现,该类群主要通过以丙酸辅酶A连接酶(PrpE)和烯酰辅酶A还原酶(AcuI)为关键酶的PrpE-AcuI途径实现丙烯酸的代谢。然后,我们分别解析了Dinoroseobacter shibae DFL 12 的 PrpE 和 R.pomeeroyi DSS-3 的 AcuI的结构。PrpE在溶液中以单体形式存在。它的拓扑结构与同家族的其它酰基辅酶A连接酶相似,拥有两个结构域,一个N端结构域和一个C端结构域。AcuI则在溶液中以二体形式存在。它的拓扑结构与来自大肠杆菌的YhdH相似,拥有一个典型的rossmann折叠结构用以结合辅酶NADPH。接着,我们分别研究了PrpE和AcuI催化中心保守的氨基酸的功能。PrpE具有两个构象,即腺苷酸形成构象和硫酯形成构象。PrpE高度保守的588位的赖氨酸和502位的甘氨酸分别位于两个构象的活性中心,且突变会导致PrpE的酶活丧失。因此,PrpE 588位的赖氨酸很可能是PrpE催化腺苷酸形成半反应的关键氨基酸,而502位的甘氨酸则很可能是硫酯形成半反应中的关键氨基酸。AcuI的催化中心结合一个NADPH辅基。NADPH烟酰胺基团附近的亲水氨基酸中仅有323位的精氨酸突变会显著影响AcuI的酶活。因此,323位的精氨酸很可能是AcuI催化过程中接受电子的广义酸,而NADPH则很可能在AcuI的催化过程中提供反应的还原力。最后,综合实验结果,我们提出了 PrpE和AcuI共同参与胞内代谢丙烯酸的分子机制。本研究对更好的认识微生物的胞内丙烯酸代谢具有重要意义。4.海洋玫瑰杆菌类群细菌分解DMSP的动力学调控机制DMSP在细菌胞内的分解代谢是一个复杂的过程,涉及到多步反应,需要多种酶分工合作,相互协调。DMSP除了作为重要的硫循环和碳循环的载体物质之外,还具有重要的生理功能。DMSP代谢菌株往往会在胞内积累DMSP作为渗透压保护剂、抗氧化剂或防冻剂。DMSP在胞内的浓度可以达到毫摩尔量级,而DMSP裂解过程的产物丙烯酸,尤其是丙烯酰辅酶A,具有很强的胞内毒性,需要快速代谢。因此,DMSP分解代谢需要一个调控机制来维持胞内的DMSP浓度并保证丙烯酸,尤其是丙烯酰辅酶A,的快速代谢。而到目前为止,尚没有文献涉及DMSP分解代谢的调控。在本论文中,我们以代谢DMSP的主要类群海洋玫瑰杆菌类群细菌为研究对象,研究了 DMSP裂解过程的动力学调控机制。首先,我们研究了已报道的多种DMSP裂解酶、丙烯酸代谢相关酶PrpE和AcuI的Km值。研究发现绝大多数的胞内DMSP裂解酶的Km值>PrpE的Km值>>AcuI的Km值。而后,我们比较了多种DMSP裂解酶,丙烯酸代谢相关酶PrpE和AcuI的kcat/Km值。结果表明,绝大多数的DMSP裂解酶的kcat/Km>PrpE的kcat/Km值>>AcuI的kcat/Km值。在此基础上,我们提出了 DMSP裂解过程的动力学调控机制,即DMSP裂解酶、PrpE和AcuI底物结合能力和催化效率的不同保证了DMSP的胞内积累和其代谢产物丙烯酸,尤其是丙烯酰辅酶A的快速代谢。接着,我们通过研究PrpE和AcuI在自然界的丰度发现PrpE和AcuI不仅在海洋玫瑰杆菌类群细菌中存在,在不同生境不同生物域的生物中均有分布。而且,除DMSP分解代谢外,多种代谢——如DMSP去甲基化代谢、乳酸代谢、丙酸代谢、β-丙氨酸和葡萄糖代谢——都可以产生丙烯酸和丙烯酰辅酶A。因此,DMSP裂解过程的动力学调控机制不仅对来自海洋的玫瑰杆菌类群细菌的DMSP分解代谢具有意义,同时具有扩展到其它生境的其它生物的其它代谢过程中的潜力,具有较为广泛的意义。本论文对海洋玫瑰杆菌类群DMSP裂解酶裂解DMSP的分子机制、DMSP裂解酶的进化机制、DMSP裂解产物丙烯酸胞内代谢的分子机制及DMS分解代谢的动力学调控机制进行了较为深入的研究,研究结果有助于我们更好的认识DMSP的分解代谢过程,更好的认识地球硫循环和碳循环。
其他文献
周恩来“戒慎恐惧”思想析陈荣昌“戒慎恐惧”是贯穿于周恩来漫长政务生涯中的一个意识中心,它支配着周恩来始终保持审慎务实的精神,是周恩来人格魅力中极为闪光之处。同时,周恩
史达祖与高观国是南宋中期两位重要的词人,其词作均以恋情、咏物、感怀三种题材类型为主。二人词风大体相近,然亦有诸多不同之处:梅溪词以沉郁为主,竹屋词则更显含蓄,这主要是
本研究对不同地区的花生秧、玉米秸、全株玉米青贮和不同品种谷草的干物质(DM)、粗蛋白质(CP)、粗脂肪(EE)、粗灰分(Ash)、钙(Ca)、磷(P)、中性洗涤纤维(NDF)和酸性洗涤纤维(
随着技术的不断成熟,无人船舶投入商业化运营的进程加快,将无人船舶引入海上交通运输领域一定会产生相应的海上风险和责任。传统船舶经常遇到的船舶碰撞责任和海洋环境污染损
2017版高中历史课程标准以培养学生的历史学科核心素养为目标,要求进一步改进历史课程教学方式,促进学生自主学习、合作学习和探究学习,提高实践能力,培养创新精神,将教学评
我国现阶段高考录取中的很多现象反映出了教育领域的不公平问题。基于此,从我国现阶段高考录取的一些现象谈起,从四个方面分析了问题产生的原因,探讨其中折射出的教育不公,进
研究了离子交换和离子排斥法用于小麦根系中有机酸分析的色谱条件,首次建立了植物报系中有机酸的高子色谱分析方法。分别用Na_2CO_3/NaHCO_3,Na_2CO_3/NaOH和HCl作离子交换和离子排斥分高的流动相,选用化学抑制型
中国已进入老龄化社会,失能老人的人数正在逐渐增加,家庭成员承担着照顾失能老人的主要责任。目前关于失能老人家庭照顾者心理状态的研究较少。本文综述了国内外失能老人家庭
随着电子封装焊点尺寸的持续减小,界面反应中液态钎料成分更易受到基体溶解与界面IMC生长的影响,而钎料成分的改变反过来又会影响界面反应;同时异质基体原子的交互作用也会更
目的:金花茶系山茶科落叶小灌木,是一种药食同源型珍贵植物,其花为罕见的金黄色,被誉为“植物界的大熊猫”。本实验对金花茶叶的化学成分进行了分离纯化和结构表征,同时对分离