【摘 要】
:
本文主要探讨了Zd-作用下拓扑动力系统中的拓扑熵,研究了几种不同定义下的拓扑熵的一些基本性质。主要内容包括:介绍了拓扑动力系统的起源及发展现状,说明本文所做的工作;介绍了
论文部分内容阅读
本文主要探讨了Zd-作用下拓扑动力系统中的拓扑熵,研究了几种不同定义下的拓扑熵的一些基本性质。主要内容包括:介绍了拓扑动力系统的起源及发展现状,说明本文所做的工作;介绍了本文所涉及的拓扑动力系统和维数理论的一些基本概念和结论;总结了在Z作用下,不同方式定义的拓扑熵的基本概念与性质;研究Zd-作用下几种不同的拓扑熵:Bowen维数熵,Packing维数熵和Bowen集熵。对Bowen维数熵,我们证明了X的任意子集的Bowen维数熵可以由该子集的点的测度下局部熵来估计:设μ是X上的Borel概率测度,E是X上的Borel子集,且0<s<∞:若hμ(x)≤s对所有的x∈E成立,则htBop(E)≤s;若hμ(x)≥s对所有的x∈E成立,且μ(E)>0,则hBtop(E)≥s。对Packing维数熵,我们也证明了类似的结果:设μ是X上的Borel概率测度,E是X上的Borel子集,且0<s<∞。,若h*μ(x)≤s对所有的x∈E成立,则hPtop(E)≤s。进一步我们研究了Zd-作用下Bowen维数熵,Packing维数熵和Bowen集熵三者间的关系。
其他文献
矩阵几何是数学家华罗庚于20世纪40年代中期由于研究多元复变函数论的需要所开创的一个数学领域.万哲先、黄礼平等学者证明了任意域上对称矩阵几何基本定理以及特征不等于2的
美国数学家 Barns1ey于1986年基于迭代函数系理论首先提出了分形插值函数的概念,对非光滑曲线、曲面的拟合等研究提供了新的方法,并取得了巨大的成功。本文主要对Fij(x,y,z)=ψ(z
光码分多址技术从编码到解码均在光学域进行,允许不同用户复用相同的波长和相同的时隙,是未来异步、高速、保密的通信备选方案之一。本文主要是围绕光地址码的相关值分布的算
随着科技的迅猛发展和经济全球化的加速,产品的市场竞争越来越剧烈,而在激烈的市场竞争中,供应链成员的的风险规避行为对供应链的绩效有着很大的影响。因此,在随机环境下研究供应链成员的风险规避行为对供应链的影响有着很强的实际意义。首先,以风险规避零售商和风险规避供应商组成的两层供应链系统为研究对象,在条件风险估值的风险度量准则下,讨论了两生产模式下风险规避零售商的最优订购策略和风险规避供应商的最优生产策略
亚纯函数理论起源于芬兰数学家R.Nevanlinna所创立的值分布理论.Nevanlinna理论的创立不仅奠定了现代亚纯函数理论的基础,而且对数学的许多分支的发展,交叉和融合也产生了重
本文在每个选择集都是正规模糊集和所涉及的t-模是连续的条件下,讨论了集合收缩扩张意义下模糊选择函数的合理性条件指标之间的关系以及模糊一致性条件指标之间的关系.其主要研
随机偏微分方程已经被广泛的应用于为自然科学与工程领域的分支领域的许多问题建立模型,例如,生物学,经济学,医药学及化学等领域。近年来,随机偏微分方程的一个比较重要和令
如何保证互联网上信息的机密性、完整性和可信性,是一个严峻的问题。因此产生了网络安全这一个概念,它通过各种协议,来维持互联网上的“治安”。在设计这些协议的时候,往往用
经典粗糙集方法在进行规则的获取时,处理的对象基本上都是具有离散型属性值的决策表,也就是属性值只是一些与对象的分类有关的标识符的决策表.国内国外的一些学者们在这方面已
随着网络信息技术的不断发展以及大数据服务理念的发展,推动了社会信息服务的快速发展.作为服务社会的一个重要机构,图书馆应当推广引进大数据服务理念,要做好信息服务工作,