论文部分内容阅读
文中提出三种求解高阶逼近任意运算阶的Grünwald-Letnikov分数阶微分器系数的快速算法,表述了算法的实现原理及对应的推导公式,并对其进行运行时间统计和计算复杂度分析。与幂级数展开法、卷积计算法、复化Simpson数值逼近法和IFFT相比,快速算法可以在误差允许的范围内,降低求解Grünwald-Letnikov分数阶微分器系数的计算复杂度,从而提高执行效率。