论文部分内容阅读
为了解决Apriori关联规则算法在处理大数据时产生大量候选项集,且无法在大数据环境下挖掘出频繁事件中所隐藏的否定关系的问题,通过深度分析事务数据库的特征,结合Boolean矩阵原理,运用粗糙集的分类思想和MapReduce并行编程模型,提出在MapReduce框架下的否定粗糙关联规则算法,以处理大数据所隐藏的否定关系。实验结果表明了该并行算法的有效性,适合挖掘出海量数据的否定关系。