论文部分内容阅读
SAR图像分类是实现SAR图像理解和解译的关键步骤,本文将显著性检测、主动学习和支持向量机分类技术相结合,提出基于显著性主动学习的SAR图像分类算法.该算法首先将基于卷积和下采样得到不同尺度的SAR图像;然后对各尺度SAR图像进行显著性检测,分为显著性区域与非显著性区域,最后对区域内像素提取特征,并由基于支持向量机的主动学习方法进行分类.实验结果表明:本文提出的方法极大提高了支持向量机分类的精度和效率.