数学教学中以迁移促创造教学法探究

来源 :俪人·教师版 | 被引量 : 0次 | 上传用户:liugang
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  【摘要】任何学习都不是孤立的,所以在教学过程中要学会运用迁移规律,培养学生的创造能力,充分调动学生的各种积极因素,让他们主动投入到新的学习活动中去,从而让已有的知识和经验迸发出强大的再生活力。
  【关键词】数学教学 迁移 创造
  数学知识之间有着非常紧密的内在联系,很多新知识在一定的条件下可以转化为旧知识后去认识和理解。迁移就是我们经常使用的一种方法,它是一种学习对另一种学习的影响,其实质就是让学生运用旧知识探索新知识、发现新规律,从而不断重组自己的认知结构。如何把新旧知识结合在一起,培养学生的创造能力,是每个老师都会面临的实际问题。实践表明,迁移活动的实现,还有赖于学生主体作用的发挥和教师的正确引导。教师应根据不同教材、不同情况,选择适当的方法,使知识的迁移能顺利实现。
  一、沟通联系促创造
  数学知识之间有着非常紧密的内在联系,在教学时,教师要沟通新旧知识的联系,创设条件,使新知识转化为旧知,从而顺利实现迁移。如在教学“小数除以小数”时,我是这样进行教学的。
  1.复习巩固。先计算:15.6÷12,3.64÷52,学生独立解答后简要复述计算方法。
  2.创设情境,提出问题。利用教材给出的问题情境,要求学生提出解决问题的方法。即:求7.65是0.85的多少倍,用除法计算,列式为7.65÷0.85。与复习题比较,不同之处是除数是小数的除法。
  3.回顾过去,创造方法。我们学过除数是整数的小数除法,现在请大家想一想,除数是小数的应该怎样计算?
  学生独立思考,创造新的计算方法。
  (1)将单位“米”转化成“厘米”来计算:7.65米=765厘米,0.85米=85厘米,765÷85=9。
  (2)根据商不变的性质,把7.65和0.85同时扩大100倍,765÷85=9。
  然后问学生:你们是怎么发现创造的?
  除数是整数的小数除法我们已经学过了,今天出现了除数是小数的小数除法,我想:只要把小数变成整数,我们不就都会做了?因此我们就运用商不变的性质把被除数和除数同时扩大100倍,765除以85的商与7.65除以0.85的商是一样的。
  为了使学生进一步理解小数除法的计算方法,我继续追问:1.26÷2.8又该如何计算呢?学生经过比较马上发现,把被除数和除数同时扩大10倍效果最好。
  从除数是整数的小数除法(旧知识)到除数是小数的小数除法(新知识),经过学生沟通新旧知识的联系,再加上自己的自主创造,逐步理解了除数是小数的除法的计算方法。
  二、寻找共性促创造
  在学生的认知结构中,是否有适当的起固定作用的观念可以利用,特别是是否有处于较高抽象概括水平的起固定作用的观念为创造提供最佳固着点,是促进积极迁移的基本保证,也是进行创造的首要因素。为此,教师要善于找到新问题与原有经验的相似性,找到生长点,并合理利用和巧妙引导。
  如在教学“角的度量”时,就可以引导学生迁移长度的测量经验,创造出量角的工具——量角器。
  1.通过比较,引发创造需要。在教学中我先出示两个凭眼睛不易直接看出大小的角,让学生自主选择比较大小的方法。学生很容易想到让这两个角的顶点重合,一条边重合,看另一条边,哪个角的另一条边在外,哪个角就大。再追问,较大的角究竟比较小的角大多少呢?假如需要精确地比较,该怎么办?从而激发认知冲突,引发测量需要,催发创造胚芽。
  2.通过回顾,唤醒已有经验。接着,我又引导学生回顾长度单位的产生过程和测量方法。一般地,人们先统一地以固定的一段长为标准(如1厘米),用它去量较短的物体;但在测量较长物体时,发现用1厘米这个标准去量太麻烦,于是,人们就创造出1分米;当用1分米去量更长的物体时,发现又比较麻烦,人们于是创造出1米。经这么一梳理,学生领悟到:度量在本质上就是先选定适宜的度量单位,再以此为标准去测量物体的长度,看被测量的物体上包含多少个这样的单位,进而得出测量结果。这样,就将“角的度量”这一新知置于“量的度量”整体的认知结构中,促使学生由长度度量迁移到角的度量上来。
  然而,这样的量角器毕竟还嫌粗糙。于是,我又引导学生尝试评价直角器。有学生指出:这个直角器能直接量出锐角的度数,但不能方便地量出比直角大的角的大小。然后再创造出平角器、周角器。经过一番探索和类比,师生合作,终于创造出常见的量角器。学生在创造的过程中实现了对角的度量这一数学知识与技能的深刻理解和主动建构,增强了创造性地解决问题的能力,发展了度量意识。
  三、类比推理促创造
  类比是根据两个或两类事物的若干属性相同,已知其中一个或一类事物还具有某一属性,从而推出另一个或另一类事物也具有某一属性的思考方法。小学数学中,新知识一般是旧知识的延伸或组合,两者之间有很多共同属性。新旧知识的共同点越多,越容易实现知识迁移。
  如在教学“整数加(减)法”时,教师需要让学生借助直观操作和在计数器上拨珠等方式,使其明白算理:只有在计数单位相同时,才能把计数单位的个数直接相加(减)。在教学“小数加(减)法”时,教师仍要让学生继续领悟并强化这种观念,使之越来越稳定和清晰。这样,在学习“异分母分数加(减)法”时,学生才有可能迁移算理。学生从中深刻领悟到,分数加法的算理与整数加法、小数加法是一样的,都是把相同计数单位的个数直接相加。这样,学生对加(减)法算理的理解就会达到概括化的程度,即使暂时遗忘了算法,也能自主创造出来。
  此外,在引导学生探寻乘法分配律中的算理时也可以这样做,如简算47×78+53×78时,用(47+53)×78,其实就是把“78”看作一个单位,原式就变成47个78的和加53个78的和=(47+53)个78的和。我还让学生尝试简算4.7×78+53×7.8,许多学生觉得困难,但有学生把原式转化为4.7×78+5.3×78=(4.7+5.3)×78,即先统一用“78”做单位,再根据积的变化规律变形,于是得到4.7个78的和加5.3个78的和等于10个78的和,从而把整数乘法的运算律迁移到小数乘法的运算中来,创造性地解决了问题。
  在教学中,要努力揭示新旧知识之间的联系,尽力创设类比情境,凡是学生能在已学的基础上类推的,尽量引导他们自己类推出应学的新知识。
其他文献
【摘要】师生主体在阅读教学中应把文本解读放在重要地位,通过主动积极的思维和情感活动,多角度、多层面、多元化、有创意地解读文本,从而产生独特的感受、体验和理解,形成正确的价值取向,拓展思维空间,提高阅读质量,进入“受到情感熏陶,获得思想启迪,享受审美乐趣”的境界。  【关键词】语文阅读;文本解读;文本细读;背景性知识         文本是指包含丰富教育资源的、可供学生、教师与之对话的阅读材料
先进的石化企业文化归根到底是通过文化的熏陶,在无形中陶冶和影响企业职工的修乔和素质,促进石化企业的全、面发展.并且为达到这个目的创建一个适宜的氛围。
【摘要】“任务驱动法”是一种建立在建构主义教学理论基础上的教学法。目前,我国中学信息技术课程中普遍采用这一教学法。建构者——教师只是指导者和辅助者,学生是教与学活动中的主体。在具体教学过程中,我们应尽量压缩教师讲授内容的时间,将大量的时间留给学生进行研究性学习。  【关键词】初中信息技术 任务教学  一、引言  担任《信息技术》课程教学的教师大多数都有这样的体会:学生刚开始接触信息技术课程时兴趣很
为克服我国环境行政执法权存在滥用和异化现象,优化环境行政执法的行使环境。本文对环境执法存在的基础和环境行政执法中存在的问题进行分析,认为环境行政执法监督机制在结构、
紫心甘薯,薯肉呈紫色到深紫色。它除了具有普通甘薯的营养成分外,还富含硒元素和花青素。花青素对100多种疾病具有预防和治疗作用。是目前科学界发现的防治疾病、维护人类健康
【摘要】初中化学是初中阶段学生学习中的难点,因为学生刚刚开始接触这门学科,缺乏对这门学科的大概认识。因此,作为教师需要在教学活动中从实际出发,不断改进教学方式。从备课、上课、课后等诸多方面来进行教学模式的创新,从而提高教学质量,帮助学生奠定良好的化学学习基础。  【关键词】初中化学 教学质量 创新         化学是一门有着悠久历史、不断与时俱进的学科,是一种创造新物质的科学。化学与我们
【摘要】在高中数学的教学过程中,测试是必不可少的,尤其是到了高三,各种模拟考试,阶段测试应接不睱,试卷评讲更是家常便饭。在新课改搞得如火如荼的今天,如何上数学评讲课才能让学生获得最大收获呢?本文就从评讲应遵循的原则、评讲课前的准备、评讲的方法三大方面进行分析。  【关键词】高中 数学 试卷评讲  在搞中学数学教研工作的几年里,平时经常到学校去听课,常常听到老师说:“真不巧,这堂课评讲试卷。”这不仅