论文部分内容阅读
煤矿突水类型的快速识别在矿井安全生产中意义重大,煤矿突水激光诱导荧光(LIF)光谱的识别方法,需要对光谱曲线进行预处理和特征提取,其过程较复杂,对此,提出了一种卷积神经网络(CNN)快速识别矿井突水类别的方法。根据煤矿矿井水层的分布特点和最常见煤矿突水类型,选取三种原始水样以及由原始水样混合的两种混合水为实验材料,利用LIF技术快速获取五种水样的200组荧光光谱曲线图,灰度化后输入CNN算法,其中150组光谱曲线图用于CNN的训练,剩余50组用于训练好的模型测试。模型测试中,CNN算法对实验水样光谱