论文部分内容阅读
In this paper, we perform the density functional theory(DFT)-based calculations by the first-principles pseudopotential method to investigate the physical properties of the newly discovered superconductor LaRu_2As_2 for the first time.The optimized structural parameters are in good agreement with the experimental results. The calculated independent elastic constants ensure the mechanical stability of the compound. The calculated Cauchy pressure, Pugh’s ratio as well as Poisson’s ratio indicate that LaRu_2As_2 should behave as a ductile material. Due to low Debye temperature, LaRu_2As_2 may be used as a thermal barrier coating(TBC) material. The new compound should exhibit metallic nature as its valence bands overlap considerably with the conduction bands. LaRu_2As_2 is expected to be a soft material and easily machinable because of its low hardness value of 6.8 GPa. The multi-band nature is observed in the calculated Fermi surface. A highly anisotropic combination of ionic, covalent and metallic interactions is expected to be in accordance with charge density calculation.
In this paper, we perform the density functional theory (DFT) -based calculations by the first-principles pseudopotential method to investigate the physical properties of the newly discovered superconductor LaRu_2As_2 for the first time.The optimized structural parameters are in good agreement with the experimental results. The calculated independent elastic constants ensure the mechanical stability of the compound. The calculated Cauchy pressure, Pugh’s ratio as well as Poisson’s ratio indicate that LaRu_2As_2 should behave as a ductile material. Due to low Debye temperature, LaRu_2As_2 may be used as a thermal barrier coating (TBC) material. The new compound should exhibit metallic nature as its valence bands overlap considerably with the conduction bands. LaRu_2As_2 is expected to be a soft material and easily machinable because of its low hardness value of 6.8 GPa. The multi-band nature is observed in the calculated Fermi surface. A highly anisotropic combination of ionic, covalent an d metallic interactions is expected to be in accordance with charge density calculation.