基于BERT的电机领域中文命名实体识别方法

来源 :计算机工程 | 被引量 : 0次 | 上传用户:Lyre_00
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对电机领域实体识别精度较低的问题,提出一种融合BERT预训练语言模型的中文命名实体识别方法。利用BERT预训练语言模型增强字的语义表示并按照上下文特征动态生成字向量,将字向量序列输入双向长短期记忆神经网络进行双向编码,同时通过条件随机场算法标注出实体识别结果。根据电机文本特点对自建数据集进行标注,并将电机领域实体划分为实物、特性描述、问题/故障、方法/技术等4个类别。实验结果表明,与基于Bi LSTM-CRF、Bi LSTM-CNN和Bi GRU的实体识别方法相比,该方法具有更高的准确率、召回率和F1值
其他文献
随着互联网上多媒体数据的爆炸式增长,单一模态的检索已经无法满足用户需求,跨模态检索应运而生。跨模态检索旨在以一种模态的数据去检索另一种模态的相关数据,其核心任务是数据特征提取和不同模态间数据的相关性度量。文中梳理了跨模态检索领域近期的研究进展,从传统方法、深度学习方法、手工特征的哈希编码方法以及深度学习的哈希编码方法等角度归纳论述了跨模态检索领域的研究成果。在此基础上,对比分析了各类算法在跨模态检索常用标准数据集上的性能。最后,分析了跨模态检索研究存在的问题,并对该领域未来发展趋势以及应用进行了展望。
随着人工智能时代的到来,各行各业均开始结合自身业务需要部署人工智能系统,这全面加速了全球范围内人工智能规模化部署和应用进程。然而,人工智能基础设施、设计研发以及融合应用过程中面临的安全风险也随之而来。为了充分规避风险,世界各国纷纷采取制定人工智能伦理准则、完善法律法规和行业管理等方式来进行人工智能安全治理。在人工智能安全治理中,人工智能安全技术体系具有重要指导意义。具体而言,人工智能安全技术体系是人工智能安全治理的重要组成部分,是落实人工智能伦理规范和法律监管要求的重要支撑,更是人工智能产业健康有序发展的
传统的对比序列模式挖掘算法存在一定数量的假阳性对比序列模式,其提供的错误信息会干扰后续任务的决策。设计一种IEP-DSP算法过滤假阳性对比序列模式。运用spade方法和WRAcc对比性度量找到候选对比序列模式和所有置换数据集合中的对比序列模式,通过模拟置换过程,使用独立精确置换检验方法为不同长度的模式建立独立精确零分布,并计算每个候选对比序列模式的精确p-value,运用错误发现率度量将各个长度的假阳性对比序列模式数量控制在置信度为α的统计显著水平下。在真实数据集和仿真数据集上的实验结果表明,IEP-DS
为实现对工作面煤与瓦斯突出快速、准确和动态的预测,提出一种基于主成分分析和权重贝叶斯的工作面煤与瓦斯突出预测方法,通过建立工作面煤与瓦斯突出预测的权重贝叶斯模型进行突出危险性等级预测。利用主成分分析确定预测模型中分类变量权重以提高预测准确性。在此基础上,设计基于相似度的训练样本数据更新方式实现对突出预测模型的有效重构。实验结果表明,与朴素贝叶斯模型和权重贝叶斯模型相比,基于主成分分析和权重贝叶斯工作面煤与瓦斯突出预测方法能快速获得高准确度的突出预测结果,为现场指导矿井工作面安全生产提供参考。
物体位姿估计是机器人在散乱环境中实现三维物体拾取的关键技术,然而目前多数用于物体位姿估计的深度学习方法严重依赖场景的RGB信息,从而限制了其应用范围。提出基于深度学习的六维位姿估计方法,在物理仿真环境下生成针对工业零件的数据集,将三维点云映射到二维平面生成深度特征图和法线特征图,并使用特征融合网络对散乱场景中的工业零件进行六维位姿估计。在仿真数据集和真实数据集上的实验结果表明,该方法相比传统点云位
文章分析了日语对日本小袖和服发展的影响,阐述了小袖和服的文化传承、发展过程以及创新点,并且从日语中描述的历史发展、各个时代的民间组织、相关政策以及西方影响这4个方面总结了日本传统小袖和服的演变过程。小袖和服将传统的布艺面料、做工手法、外形轮廓与西方先进的纺织技术和审美风格相结合,顺应大时代背景下全球化的变化,让和服能够被当代社会接受。同时,借助经济全球化以及贸易往来频繁的时代特点,向全世界展示特有的和服文化,使全球各地对和服产生深刻的了解,打开全球文化类产品的市场。
在架空输电线路中对带电状态的绝缘子进行检测和故障定位,对保证电网可靠运行具有重大意义。基于无人机平台提出一种复杂背景条件下的绝缘子检测算法。在检测算法的特征提取层引入注意力机制模块以获取更多的绝缘子特征信息,同时利用航拍图像中绝缘子的先验知识,结合K均值聚类算法改进目标候选框的生成模式。在此基础上,通过将中心损失引入绝缘子检测目标函数以增强训练过程中绝缘子类内特征的内聚性。实验结果表明,相对Fas
人脸检测是计算机视觉领域的一个经典问题,其在人工智能大数据驱动的赋能下焕发出崭新生机,在刷脸支付、身份认证、摄像美颜、智能安防等领域均体现出重要的应用价值与广阔的应用前景。然而,随着人脸检测部署应用进程的全面加速,其安全风险与隐患也日益凸显。因此,文中分析总结了现行人脸检测模型在全生命周期的各阶段所面临的安全风险,其中对抗攻击因对人脸检测的可用性和可靠性构成严重威胁,并可能使人脸检测模块丧失基本功
近年来人工智能迅速发展,被用于语音、图像等多种领域,并取得了显著效果。然而,这些训练好的人工智能模型非常容易被复制并扩散,因此,为了保护模型的知识产权,关于模型版权保护的一系列算法或技术应运而生,其中一种就是模型水印技术。通过模型水印技术,向人工智能模型植入水印,一旦模型被窃取,可以通过验证水印来证明自己的版权所有权,维护自己的知识产权,从而达到保护模型的作用。该类技术在近年来成为了一大热点,但目前尚未形成较为统一的框架。为了更好地理解,总结了现阶段模型水印的研究成果,论述了当前主流的模型水印算法,分析了
Fast-Hot Stuff区块链共识算法采用两轮投票的共识过程,当主节点在第一轮投票后发生错误时,吞吐量将大幅降低,为解决该问题,提出一种改进的Fast-Hot Stuff算法。该算法引入一个新的区块扩展方式,在某一区块的共识过程中,当主节点在第一轮投票发生错误而导致视图更换时,副本节点将其投票消息传递至新的视图,新视图中的主节点收到足够多的投票消息,根据该区块进行扩展生成新区块并发起共识,以使更多区块上链并提高吞吐量。实验结果表明,当主节点在第一轮投票后发生错误时,Hot Stuff与Fast-Hot