论文部分内容阅读
针对粒子滤波的粒子退化现象及多样性损失问题,提出了一种新的基于优化的自适应遗传算法的粒子滤波算法。该算法首先依据每个采样时刻生成的粒子集合重要性权值作为适应度值,自适应的确定交叉、遗传的概率;然后对选出的粒子进行遗传操作,重新度量其粒子的权值并进行状态估计。该方法不仅保留了粒子的多样性,而且相对于普通的基于自适应遗传算法的粒子滤波算法,降低了高权值粒子交叉和变异的可能,使粒子的采样更接近于状态后验概率密度分布。实验结果表明,该算法有效提高了滤波精度。