论文部分内容阅读
采用K-means算法对土壤肥力数据进行聚类分析,然后针对传统K-means聚类算法在处理大数据量时时间复杂度高的难题,提出基于大数据处理技术的K-means算法。实验结果表明:(1)用K-means算法对2013年农安县13个乡镇的土壤养分数据的聚类结果显示,当k值设为3时聚类效果最优,且与实际情况相符。(2)基于Hadoop平台的MapReduce分布式下实现的K-means算法与传统的串行算法相比,提高运行速度并完成大数据量下的计算任务。